Articles
All articles | Recent articles
Mixed-Mode Fracture Criterion of Short Carbon Fiber-Dispersed SiC Matrix Composite
R. Inoue1, J.-M. Yang1,2, H. Kakisawa1, Y. Kagawa1,3
1 Research Center for Advanced Science and Technology (RCAST), The University of Tokyo 4 – 6-1 Komaba, Meguro-ku, Tokyo 153 – 8904, Japan
2 Department of Materials Science and Engineering, University of California, Los Angeles, California (UCLA), 90095 – 1595, USA
3 Composite material group, Hybrid Material Center, National Institute for Materials Science (NIMS) 1 – 2-1, Sengen, Tsukuba, Ibaraki, 305 – 0047, Japan
received November 14, 2016, received in revised form December 20, 2016, accepted February 23, 2017
Vol. 8, No. 2, Pages 223-232 DOI: 10.4416/JCST2016-00108
Abstract
Fracture toughness tests for short carbon fiber-dispersed SiC matrix (SCF/SiC) composites fabricated by means of the silicon melt infiltration (MI) process have been carried out under mode I, mode II and mixed I/II mode loading conditions. A Brazilian disk specimen was used for the mixed-mode fracture toughness test. The results showed that the fracture toughness under mixed I/II mixed-mode loading conditions was substantially higher than that under mode I loading. The relationship between mixed-mode fracture toughness and the mode mixity parameter was found to be in agreement with the generalized maximum tangential stress (G-MTS) criterion. Compressive T-stress acting parallel to the notch direction plays an important role in affecting the mixed-mode fracture toughness of SCF/SiC composite using Brazilian disk specimens.
Download Full Article (PDF)
Keywords
Composite, carbon fiber, SiC, toughness, mixed mode
References
1 Krenkel,W., Carbon Fiber Reinforced Silicon Carbide Composites (C/SiC, C/C-SiC), In: Handbook of ceramic composites, Springer, US 117 – 148, (2005).
2 Krenkel, W., Heidenreich, B., Renz, R.: C/C-SiC Composites for advanced friction systems, Adv. Eng. Mater., 4, 427 – 436, (2002).
3 Krenkel, W.: Carbon fiber reinforced CMC for high-performance structures, Int. J. Appl. Ceram. Tech., 1, [2] 188 – 200, (2004).
4 Krenkel, W., Berndt, F.: C/C-SiC composites for space applications and advanced friction systems, Mater. Sci. Eng. A, 412, 177 – 181, (2005).
5 El-Hija, H. A., Krenkel, W., Hugel, S.: Development of C/C-SiC brake pads for high-performance elevators, Int. J. Appl. Ceram. Tech, 2, 105 – 113, (2005).
6 Inoue, R., Yang, J. M., Kakisawa, H., Kagawa, Y.: Mode I fracture toughness of short carbon fiber-dispersed SiC matrix composite fabricated by melt infiltration process, Ceram. Int., 39, [7], 8341 – 8346, (2013).
7 Inoue, R., Kakisawa, H. and Kagawa, Y.: Fracture criterion of short carbon fiber-dispersed SiC matrix composite under mixed mode loading condition. In: Design, development, and applications of structural ceramics, composites, and nanomaterials: Ceramic transactions, Vol. 244 (Eds D. Singh, D. Zhu, W. M. Kriven, S. Mathur and H.-T. Lin), John Wiley & Sons, Inc., Hoboken, NJ, USA, (2014).
8 Atkinson, C., Smelser, R. E., Sanchez, J.: Combined mode fracture via the cracked brazilian disk test, Int. J. Fract., 18, [4], (1982).
9 Shih, C. F.: Small-scale yielding analysis of mixed mode plane-strain crack problems. In: Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International, 1974.
10 Sherry, D. K., Rosenfield, A. R.: Slow crack growth in glass in combined mode I and mode II loading, Scripta. Mater., 25, 997 – 1002, (1991).
11 Shetty, D. K.: Mixed-Mode Fracture in Biaxial Stress State: Application of the Diametral-Compression (Brazilian Disk) Test, Eng. Fract. Mech., 26, 6, 825 – 840, (1987).
12 Singh, D., Shetty, D. K.: Fracture toughness of polycrystalline ceramics in combined mode I and mode II loading, J. Am. Ceram. Soc., 12, [1] 78 – 84, (1989).
13 Erdogan, F., Sih, G. C.: On the crack extension in plates under plane loading and transverse shear, J. Basic. Eng.-T ASME, 85, 519 – 527, (1963).
14 Hussain, M. A., Pu S. L., Underwood, J.: Strain energy release rate for a crack under combined mode I and mode II. In: Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International, 1974.
15 Palaniswamy, K. K. W. G., Knauss, W. G.: On the problem of crack extension in brittle solids under general loading, Mechanics today 4, [30], 87 – 148, (1978).
16 Sih, G. C.: Strain-energy-density factor applied to mixed mode crack problems, Int. J. Fract., 10, 305 – 321, (1974).
17 Williams, J. G., Ewing, P. D.: Fracture under complex stress-the angled crack problem, Int. J. Fract., 8, 441 – 416, (1972).
18 Smith, D. J., Ayatollahi, M. R., Pavier, M. J.: On the consequences of T-stress in elastic brittle fracture, Proc. R. Soc. Lond., 462, [2072], 2415 – 2437, (2006).
19 Ayatollahi, M. R., Aliha, M. R. M.: Fracture analysis of some ceramics under mixed mode loading, J. Am. Ceram. Soc., 94, [2], 561 – 569, (2011)
20 Ayatollahi, M. R., Aliha, M. R. M.: On the use of brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials, Eng. Fract. Mech., 75, [16], 4631 – 4641, (2008).
21 Fett, T.: Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions, Eng. Fract. Mech., 68, [9], 1119 – 1136, (2001).
22 Smith, D. J., Ayatollahi, M. R., Pavier, M. J.: The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading, Fatigue Fract. Eng. Mater. Struct., 24, [2], 137 – 150, (2001).
23 Williams, M. L.: On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24, 109 – 114, (1957).
Copyright
Göller Verlag GmbH