Articles
All articles | Recent articles
Effects of TiO2 Addition on Kinetics of In Situ Spinel Formation and Properties of Alumina-Magnesia Refractory Castables
W. Yuan, H. Tang, H. Shang, J. Li, C. Deng, H. Zhu
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
received November 2, 2016, received in revised form December 18, 2016, accepted January 25, 2017
Vol. 8, No. 1, Pages 121-128 DOI: 10.4416/JCST2016-00098
Abstract
This work addresses the effects of TiO2 addition on the kinetics of in situ spinel formation and the properties of alumina-magnesia refractory castables. The kinetics of the formation of spinel in alumina-magnesia refractory castables with TiO2 addition (0 – 3 wt%) during firing at 1250 – 1450 °C for different times was investigated by means of XRD analysis. The reaction rate constant and apparent activation energy of spinel formation in castables calculated based on the Ginstling-Braunstein model varied with the firing temperature and TiO2 addition. A comparison of the castables' properties including permanent linear changes, apparent porosity and strength was discussed. The results demonstrated that the in situ reactions and properties of the alumina-magnesia refractory castables depend on the combined effects of TiO2.
Download Full Article (PDF)
Keywords
Castables, kinetic, spinel, reaction, properties
References
1 Braulio, M.A.L., Rigaud, M., Buhr, A., Parr, C., Pandolfelli, V.C.: Spinel-containing alumina-based refractory castables, Ceram. Int., 37, 1705 – 1724, (2011).
2 Liang, Y.H., Huang, A., Zhu, X.W., Gu, H.Z., Fu, L.P.: Dynamic slag/refractory interaction of lightweight Al2O3-MgO castable for refining ladle, Ceram. Int., 41, [6], 8149 – 8154, (2015).
3 Fu, L.P., Gu, H.Z., Huang, A., Zhang, M.J., Hong, X.Q., Jin L.W.: Possible improvements of alumina-magnesia castable by lightweight microporous aggregates, Ceram. Int., 41, [1], 1263 – 1270, (2015).
4 Fu, L.P., Gu, H.Z., Huang, A., Zhang, M.J., Li, Z.K.: Slag resistance mechanism of lightweight microporous corundum aggregate, J. Am. Ceram. Soc., 98, [5], 1658 – 1663, (2015).
5 Braulio, M.A.L., Pandolfelli, V.C.: Tailoring the microstructure of cement-bonded alumina-magnesia refractory castables, J. Am. Ceram. Soc., 93, [10], 2981 – 2985, (2010).
6 Rigaud, M., Palco, S., Wang, N.: Spinel formation in the MgO-Al2O3 system relevant to basic oxides, in: Proceedings of UNITECR'95, Kyoto,Japan, 387 – 394, (1995).
7 Semler, C.E.: Refractories – the world's most important but least known products, Am. Ceram. Soc. Bull., 93, [2], 34 – 39, (2014).
8 Yuan, W.J., Deng, C.J., Zhu, H.X.: Effects of TiO2 addition on the expansion behavior of alumina-magnesia refractory castables, Mater. Chem. Phys., 162, 724 – 733, (2015).
9 Lee, W.E., Argent, B.B., Zhang, S.: Complex phase equilibria in refractories design and use, J. Am. Ceram. Soc., 85, [12], 2911 – 2918, (2002).
10 Yuan, W.J., Deng, C.J., Zhu, H.X.: The influence of TiO2 addition on the modulus of rupture of alumina-magnesia refractory castables, J. Mater. Eng. Perform., 24, 3100 – 3106, (2015).
11 Sako, E.Y., Braulio, M.A.L., Zinngrebe, E., Laan, S.R. van der, Pandolfelli, V.C.: Fundamentals and applications on in situ spinel formation mechanisms in Al2O3-MgO refractory castables, Ceram. Int., 38, 2243 – 2251, (2012).
12 Sinhamahapatra, S., Kausik Dana, K., Ghosh, A., Reddy, V.P., Tripathin, H.S.: Dynamic thermal study to rationalize the role of titania in reaction sintering of magnesia-alumina system, Ceram. Int., 41, 1073 – 1078, (2015).
13 Snyder, R.L.: The use of reference intensity ratios in X-ray quantitative analysis, Powder Diffr., 7, [4], 186 – 193, (1992).
14 Lu, C.H., Wu, P.C.: Reaction mechanism and kinetic analysis of the formation of Sr2SiO4 via solid-state reaction, J. Alloy. Compd., 466, 457 – 462, (2008).
15 Maitra, S., Das, S., Sen, A.: The role of TiO2 in the densification of low cement Al2O3-MgO spinel castable, Ceram. Int., 33, 239 – 243, (2007).
Copyright
Göller Verlag GmbH