Articles
All articles | Recent articles
Synthesis, Densification and Characterization of Nanosized Oxide Ceramic Powders with Eutectic Compositions by Heating of Alcohol-Aqueous Salt Solutions
J.-H. Ouyang, Y.-H. Ma, A. Henniche, B. Wang, Z.-G. Wang, Y.-J. Wang
School of Materials Science and Engineering, Harbin Institute of Technology, 92 Westdazhi Street, Harbin 150001, China
received October 29, 2016, received in revised form December 3, 2016, accepted January 13, 2017
Vol. 8, No. 1, Pages 81-90 DOI: 10.4416/JCST2016-00097
Abstract
Nanosized spherical powders of Al2O3-ZrO2 (Y2O3) and Al2O3-SmAlO3 with eutectic compositions have been synthesized with a facile and novel method involving the heating of aqueous salt solutions with an alcohol-water mixture as the solvent. The kind and concentration of aqueous salt solutions have a significant influence on the precipitation and morphologies of the resulting powders. Nanoscale particulates with a narrow size distribution were successfully obtained. The amorphous powders are crystallized to a mixture of t-ZrO2 phase and α-Al2O3 phase at a calcination temperature of 1250 °C. Al2O3-ZrO2 (Y2O3) powders exhibit an average particle size of 200 nm after calcination. However, fine Al2O3-SmAlO3 nano-powders with an average size of 40 nm were synthesized after calcination at 1300 °C in which the resulting precipitates are crystallized to a mixture of α-Al2O3 and orthorhombic SmAlO3. These ceramic powders were densified by hot pressing to further evaluate their microstructure and mechanical properties. The as-sintered Al2O3-ZrO2 (Y2O3) ceramic consists of 42.8 wt% t-ZrO2 and 57.2 wt% α-Al2O3 with a relative density of 98.5 %, and has a flexural strength of 1363 MPa and fracture toughness of 10.01 MPa·m1/2, which is mainly attributed to phase transformation toughening of t-ZrO2 to m-ZrO2 during fracture. However, the Al2O3-SmAlO3 ceramic has a relative density of 99.2%, but flexural strength of just 529 MPa.
Download Full Article (PDF)
Keywords
Al2O3-ZrO2(Y2O3) ceramic, Al2O3-SmAlO3 ceramic, co-precipitation, microstructure morphology, mechanical properties
References
1 Aza, A.H., Chevalier, J., Fantozzi, G.: Slow crack growth behavior of zirconia-toughened alumina ceramics processed by different methods, J. Am. Ceram. Soc., 86, 115 – 120, (2003).
2 Chevalier, J.: What future for zirconia as a biomaterial, J. Biomaterials, 27, 535 – 543, (2006).
3 Buban, J.P., Chen, K.J., Shibata, N., Ching, W.Y., Yamamoto, T., Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities, J. Science., 311, 212 – 215, (2006).
4 Li, T., Chen, Q., Schadler, L.S., Siegel, R.W.: Scratch behavior of nanoparticle Al2O3-filled gelatin films, J. Polymer Composites., 23, 1076 – 1086, (2002).
5 Ogawa, K., Vogt, T., Ullmann, M., Johnson, S., Friedlander, S.K.: Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation, J. Appl. Phys., 87, 63 – 73, (2000).
6 Li, G., Jiang, Z., Jiang, A., Zhang, L.: Strengthening of porous Al2O3 ceramics through nanoparticle addition, J. Nanostruct. Mater., 8, 749 – 754, (1997)
7 Shek, C.H., Lai, J.K.L., Gu, T.S., Lin, G.M.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders, J. Nanostruct. Mater., 8, 605 – 610, (1997).
8 Maïga, S.B., Nguyen, C.T., Galanis, N., Roy, G., Maré, T., Coqueux, M.: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, Int. J. Numer. Method H., 16, 275 – 292, (2006).
9 Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., Kohtoku, Y.: Ductile ceramic eutectic composite with high strength at 1873 K, J. Nature., 389, 49 – 52, (1997).
10 Waku, Y. Sakata, S., Mitani, A., Shimizu, K.: Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites, J. Mater. Sci., 37, 2975 – 2982, (2002).
11 Mesa, M.C., Oliete, P.B., Pastor, J.Y., Martin, A. LLorca. J.: Mechanical properties up to 1900 K of Al2O3/Er3Al5O12/ZrO2 eutectic ceramics grown by the laser floating zone method, J. Eur. Ceram. Soc., 34, 2081 – 2087, (2014).
12 Su, H.J., Zhang, J., Liu, L., Fu, H.Z.: Preparation and microstructure evolution of directionally solidified Al2O3/YAG/YSZ ternary eutectic ceramics by a modified electron beam floating zone melting, J. Mater. Lett., 91, 92 – 95, (2013)
13 Zhai, S., Liu, J., Wang, J.: Microstructure of the directionally solidified ternary eutectic ceramic Al2O3/MgAl2O4/ZrO2, J. Ceram Int., 42, 8079 – 8084, (2016)
14 Zheng, Y.T., Li, H.B., Zhou, T., Zhao, J., Yang, P.: Microstructure and mechanical properties of Al2O3/ZrO2 eutectic ceramic composites prepared by explosion synthesis, J. Alloy. Compd., 551, 475 – 480, (2013).
15 Larrea, A., De la Fuente, G.F., Merino, R.I., Orera, V.M.: ZrO2-Al2O3 eutectic plates produced by laser zone melting, J. Eur. Ceram. Soc., 22, 191 – 198, (2002).
16 Larrea, A., Orera, V.M., Merino, R.I., Pena, J.I.: Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates, J. Eur. Ceram. Soc., 25, 1419 – 1429, (2005).
17 Niu, F., Wu, D., Ma, G., Wang, J., Guo, M., Zhang, B.: Nanosized microstructure of Al2O3-ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping, Scr. Mater., 95, 39 – 41, (2015).
18 Yao, B., Su, H., Zhang, J., Ren, Q., Ma, W., Liu, L., Fu, H.: Sintering densification and microstructure formation of bulk Al2O3/YAG eutectic ceramics by hot pressing based on fine eutectic structure, Mater. Des., 92, 213 – 222, (2016).
19 Benamara, O., Lebbou, K.: Shaped ceramic eutectic plates grown from the melt and their properties, J. Cryst. Growth, 449, 67 – 74, (2016).
20 Hassanzadeh-Tabrizi, S.A., Mazaheri, M., Aminzare, M., Sadrnezhaad, S.K.: Reverse precipitation synthesis and characterization of CeO2 nanopowder, J. Alloy. Compd., 491, 499 – 502, (2010).
21 Hunter, R.J.: Foundations of colloid science, Clarendon Press, Oxford, UK, 1, 443, (1987).
22 Moon, Y.T., Park, H.K., Kim, D.K., Kim, C.H.: Preparation of monodisperse and spherical zirconia powders by heating of alcohol-aqueous salt solutions, J. Am. Ceram. Soc., 78, 2690 – 2694, (1995).
23 Barrera, A., Fuentes, S., Viniegra, M., Avalos-Borja, M., Bogdanchikova, N., Campa-Molina, J.: Structural properties of Al2O3-La2O3 binary oxides prepared by sol-gel, J. Mater. Res. Bull., 42, 640 – 648, (2007).
24 Xia, X., Li, X., Zhang, M., Zheng, D.: Transitional/eutectic microstructure of Al2O3-ZrO2 (Y2O3) ceramics prepared by spark plasma sintering; Mater. Lett., 175, 212 – 214, (2016).
Copyright
Göller Verlag GmbH