• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Novel Ceramic Composites for Personalized 3D Structures

M. Ahlhelm, E. Schwarzer, U. Scheithauer, T. Moritz, A. Michaelis

Fraunhofer Institut für Keramische Technologien und Systeme (IKTS), Winterbergstraße 28, D-01277 Dresden, Germany

received November 2, 2016, received in revised form December 21, 2016, accepted January 25, 2017

Vol. 8, No. 1, Pages 91-100   DOI: 10.4416/JCST2016-00093

Abstract

The objective of the presented work is to further introduce a new hybrid shaping technique and develop novel porous, near-net shaped composite structures e.g. for personalized bone replacement materials.

The suspension-based additive manufacturing technique lithography-based ceramic manufacturing enables high structural resolution and the manufacturing of dense (> 99 %) ceramic components with high performance compared to other available AM techniques. On the other hand, freeze foaming offers the possibility to achieve mainly open porous and interconnected sponge-like structures that provably allow the ingrowth and differentiation of human mesenchymal stem cells (hMSCs). The near-net shaping feasibility of this foaming technique was used to foam the inner contours of complex LCM-manufactured ceramic shell structures in the shape of a femoral bone model. After a co-sintering step, they combine to structural composites with dense and porous features in one single 3D structure. This contribution therefore provides insides into a new line of technology comprising a new degree of freedom in personalization and application such as bone replacement materials.

Download Full Article (PDF)

Keywords

Bioceramics, bone replacement materials, freeze foaming, LCM, hybrid shaping

References

1 Homa, J.: Rapid prototyping of high performance ceramics opens new opportunities for the CIM industry, Powder Inject. Molding Int., 6, [3], 65 – 68, (2012).

2 Moritz, T.: Light-weight green compact and molded article made of a ceramic and/or powder-metallurgical material, and the method for the production of thereof. German Patent DE102008000100, (2008).

3 Ahlhelm, M., Moritz, T.: Freeze Foaming: A promising approach for synthesizing cellular ceramic materials. In: Proceedings of the International Conference on Cellular Materials Cellmat, Dresden, 2010.

4 Ahlhelm, M., Günther, P., Scheithauer, U., Schwarzer, E., Günther, A., Slawik, T., Moritz, T., Michaelis, A.: Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications, J. Eur. Ceram. Soc., 36, [12], 2883 – 2888, (2016).

5 Ahlhelm, M., Zybell, K., Gorjup, E., von Briesen, H., Moritz, T.: Freeze-foaming-a new approach to manufacture ceramic cellular structures allowing the ingrowth and differentiation of mesenchymal stem cells. In: Proceedings of the 13th International Meeting and Seminar on Ceramics, Cells and Tissues 13th CCT, Faenza, Italy, 2011.

6 Schwarzer, E., Ahlhelm, M., Scheithauer, U., Moritz, T., Michaelis, A.: Development of photo-curable ceramic suspensions usable for additive manufacturing combined with Freeze Foaming. In: Proceedings of the 3rd Fraunhofer Direct Digital Manufacturing Conference DDMC2016, Berlin, 2016.

7 Roy, D.M., Eysel, W., Dinger, D.: Hydrothermal synthesis of various carbonate containing calcium hydroxyapatites, Mater. Res. Bull., 9, 35 – 39, (1974).

8 Roy, D.M., Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature, 247, 220 – 222, (1974).

9 Sivakumar, M., Kumar, T.S.S., Shantha, K.L., Rao, K.P.: Development of hydroxyapatite derived from indian coral, Biomaterials, 17, 1709 – 1714, (1996).

10 Xu, Y., Wang, D., Yang, L., Tang, H.: Hydrothermal conversion of coral into hydroxyapatite, Mater. Charact., 47, 83 – 87, (2001).

11 Dan, N.: Synthesis of hierarchical materials, Trends Biotechnol., 18, 370 – 374, (2000).

12 Fratzl, P., Weinkamer, R.: Nature's hierarchical materials, Prog. Mater Sci., 52, 1263 – 1334, (2007).

13 Kusmanto, F., Walker, G., Gan, Q., Walsh, P., Buchanan, F., Dickson, G., McCaigue, M., Maggs, C., Dring, M.: Development of composite tissue scaffolds containing naturally sourced microporous hydroxyapatite, Chem. Eng. J., 139, 398 – 407, (2008).

14 Rocha, J., Lemos, A., Agathopoulos, S., Kannan, S., Valerio, P., Ferreira, J.: Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones, J. Biomed. Mater. Res., Part A, 77A, 160 – 168, (2006).

15 Vecchio, K., Zhang, X., Massie, J., Wang, M., Kim, C.: Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants, Acta Biomater., 3, 910 – 918, (2007).

16 Vecchio, K., Zhang, X., Massie, J., Wang, M., Kim, C.: Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants, Acta Biomater., 3, 785 – 793, (2007).

17 Walsh, P., Buchanan, F., Dring, M., Maggs, C., Bell, S., Walker, G.: Low-pressure synthesis and characterisation of hydroxyapatite derived from mineralise red algae, Chem. Eng. J., 137, 173 – 179, (2008).

18 Wu, S.L., Liu, X.M., Hu, T., Chu, P.K., Ho, J.P.Y., Chan, Y.L., Yeung, K.W.K., Chu, C.L., Hung, T.F., Huo, K.F., Chung, C.Y., Lu, W.W., Cheung, K.M.C., Luk, K.D.K.: A biomimetic hierarchical scaffold: Natural growth of nanotitanates on three-dimensional microporous Ti-based metals, Nano Lett., 8, 3803 – 3808, (2008).

19 Zhang, X., Vecchio, K.S.: Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 26, 1445 – 1450, (2006).

20 Ruffini, A., Sprio, S., Tampieri, A.:Study of the hydrothermal transformation of wood-derived calcium carbonate into 3D hierarchically organized hydroxyapatite, Chem. Eng. J., 217, 150 – 158 (2013).

21 Ahlhelm, M., Moritz, T.: Synthetic bone substitute material and method for producing the same. European Patent EP2682137A3, (2013).

22 Ahlhelm, M., Moritz, T.: Production of a biocompatible hydroxyapatite-ZrO2 hybrid form with the method of freeze-foaming, (in German), in Schriftenreihe Werkstoffe und Werkstofftechnische Anwendungen 41, Hrsg., B. Wielage, Chemnitz: Deutsche Gesellschaft für Materialkunde e.V. DGM, 2011.

23 Ahlhelm, M., Gorjup, E., von Briesen, H., Moritz, T., Michaelis, A.: Freeze-foaming – A promising approach to manufacture strength enhanced ceramic cellular structures allowing the ingrowth and differentiation of human mesenchymal stem cells, in: Proceedings of MiMe-Materials in Medicine, International Conference 1st edition MIME, Faenza, Italy, 2013.

24 Ahlhelm, M.: Freeze Foams – Development of cellular structures for various applications, (in German), in Schriftenreihe Kompetenzen in Keramik, Band 32, Hrsg.: Fraunhofer IKTS, Dresden; Alexander Michaelis, Fraunhofer Verlag, ISBN 978 – 3-8396 – 0977 – 4, 2016.

25 Ahlhelm, M., Fruhstorfer, J., Moritz, T., Michaelis, A.: Producing lightweight refractory bricks with the direct freeze foaming method, (in German), Keramische Zeitschrift, 6, [63], 405 – 409, (2011).

26 Ahlhelm, M., Fruhstorfer, J., Moritz, T., Michaelis, A.: The manufacturing of lightweight refractories by direct freeze foaming technique, Interceram, 6, [60], 394 – 399, (2011).

27 Günther, P.: Development of porosity-graded structures on the basis of zirconium dioxide with the combination of additive manufacturing and direct freeze foaming, (in German), Master's Thesis, Hochschule Koblenz/Fraunhofer IKTS Dresden, (2015).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH