Articles
All articles | Recent articles
Electric-Field-Induced Phase Transition in Mn-Doped (K0.48Na0.48Li0.04)NbO3 Lead-Free Ceramics
H.E. Mgbemere1, G.A. Schneider2, L. Schmitt3, M. Hinterstein4
1 Department of Metallurgical and Materials Engineering, University of Lagos, Lagos Nigeria
2 Institute of Advanced Ceramics, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
3 Material- und Geowissenschaften,Technische Universität Darmstadt, Darmstadt, Germany
4 Institute for Applied Materials, Karlsruhe Institute for Technology, Karlsruhe, D-76131, Germany
received September 20, 2016, received in revised form November 7, 2016, accepted December 16, 2016
Vol. 8, No. 1, Pages 45-52 DOI: 10.4416/JCST2016-00074
Abstract
In situ applied-electric-field high-resolution X-ray diffraction has been used to study the field-induced response of Mn-doped (K0.48Na0.48Li0.04)NbO3 (KNN-L) ceramics produced using the conventional mixed-oxide processing route. Ferroelectric domains are observed with transmission electron microscopy with indications of nano-segregation of Mn. Rietveld refinement (FULLPROF Suite) is used to refine the diffraction patterns, and a phase change from orthorhombic symmetry with space group Amm2 to tetragonal symmetry with space group P4mm is observed when the applied field exceeds 1.4 kV/mm. Phase coexistence between the two phases is also observed at applied fields between 1.2 kV/mm and 1.3 kV/mm with possible implications of being the coercive field EC value of the sample. A better understanding of the structural behaviour of this type of lead-free ceramics will lead to improvements in their piezoelectric and electromechanical properties.
Download Full Article (PDF)
Keywords
Keywords: (KxNa1-x)NbO3, high resolution, X-ray diffraction, electric field, lead-free ceramics
References
1 Takenaka, T., Sakata, K.: Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics, Ferroelectrics, 95, 153 – 156, (1989).
2 Lu, Y., Li, Y., Wang, D., Wang, T., Yin, Q.: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Ag1/2)TiO3 system, J. Electroceramic, 21, 309 – 313, (2008).
3 Hinterstein, M., Knapp, M., Hoelzel, M., Jo, W., Cervellino, A., Ehrenberg, H., Fuess, H.: Field-induced phase transition in Bi1/2Na1/2TiO3- based lead-free piezoelectric ceramics, J. Appl. Cryst., 43, 1314 – 1321, (2010).
4 Picht, G., Toepfer, J., Hennig, E.: Structural properties of (Bi0.5Na0.5)1-xBaxTiO3 lead-free piezoelectric ceramics, J. Eur Ceram. Soc., 30, 3445 – 3453, (2010).
5 Egerton, L., Dillion, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate, J. Am. Ceram. Soc., 42, 438 – 442, (1959).
6 Guo, Y., Kakimoto, K.-I., Ohsato, H.: (Na0.5K0.5)NbO3 - LiTaO3 lead-free piezoelectric ceramics, Mater. Lett., 59, 241 – 244, (2005).
7 Matsubara, M., Yamaguchi, T., Kikuta, K., Shin-Ichi, H.: Effect of li substitution on the piezoelectric properties of potassium sodium niobate ceramics, Jpn. J. Appl. Phys., 44, 6136 – 6142, (2005).
8 Mgbemere, H.E., Hinterstein, M., Schneider, G.A.: Electrical and structural characterization of (KxNa1-x)NbO3 ceramics modified with li and ta, J. Appl. Cryst., 44, 1080 – 1089, (2011).
9 Wang, L., Ren, W., Ma, W., Liu, M., Shi, P., Wu, X.: Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics, AIP Advances, 5, 097120, (2015).
10 Edwards, G.C., Choy, S.H., Chan, H.L.W., Scott, D.A., Batten, A.: Lead-free transducer for non-destructive evaluation, Appl. Phys. A, 88, 209 – 215, (2007).
11 Bah, M., Giovannelli, F., Schoenstein, F., Brosseau, C., Deschamps, J.-R., Dorvaux, F., Haumesser, L., Clezi, E. L., Monot-Laffez, I.: Ultrasonic transducers based on undoped lead-free (K0.5Na0.5)NbO3 ceramics, Ultrasonics, 63, 23 – 30, (2015)
12 Wang, X., Wu, J., Xiao, D., Zhu, J., Cheng, X., Zheng, T., Zhang, B., Lou, X., Wang, X.: Giant piezoelectricity in Potassium-Sodium niobate lead-free ceramics, J. Am. Chem. Soc., 136, 2905 – 2910, (2014).
13 Yao F.-Z., Wang, K., Jo, W., Lee, J.-S., Li, J.-F.: Effect of poling temperature on piezoelectricity of CaZrO3-modified (K, Na)NbO3-based lead-free ceramics, J. Appl. Phys.,116, 114102:1 – 6, (2014).
14 Yao, F.-Z., Wang, K., Jo, W., Webber, K. G., Comyn, T. P., Ding, J.-X., Xu, B., Cheng, L.-Q., Zheng, M.-P., Hou, Y.-D., Li, J.-F.: Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics, Adv. Funct. Mater., 26, 1217 – 1224, (2016).
15 Schoenau, K.A., Schmitt, L.A., Knapp, M., Fuess, H., Eichel, R.-A., Kungl, H., Hoffmann, M.J.: Nanodomain structure of Pb[Zr1-xTix]O3 at its morphotropic phase boundary: investigations from local to average structure, Phys. Rev. B, 75, (2007).
16 Durbin, M.K., Jacobs, E.W., Hicks, J.C., Park, S.-E.: In situ x-ray diffraction study of an electric field induced phase transition in the single crystal relaxor ferroelectric, 92% Pb(Zn1/3Nb2/3)O3-8%PbTiO3, Appl. Phys. Lett., 74, 2848 – 2850, (1999).
17 Bellaiche, L., Garcıa, A., Vanderbilt, D.: Electric-field induced polarization paths in Pb(Zr1-xTix)O3 alloys, Condensed Mater- Materials Science, arXiv: cond-mat/0104335, 1 – 4 (2001)
18 Ren, W., Han, L., Wicks, R., Yang, G., Mukherjee, B.K.: Electric-field-induced phase transitions of <001>-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals, In: Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, Bellingham, WA, 272 – 278 2005.
19 Chien, R.R., Tu, C.-S., Schmidt, V.H., Wang, F.-T.: Electric-field-induced and temperature-induced phase transitions in high-strain ferroelectric Pb(Mg1/3Nb2/3)0.67Ti0.33O3 single crystal, J. Phys.: Condens. Matter, 18, 8337 – 8344, (2016).
20 Hinterstein, M., Hoelzel, M., Rouquette, J., Haines, J., Glaum, J., Kungl, H., Hoffman, M.: Interplay of strain mechanisms in morphotropic piezoceramics, Acta Mater., 94, 319 – 327, (2015).
21 Hinterstein, M., Schmitt, L.A., Hoelzel, M., Jo, W., Rödel, J., Kleebe, H.-J., Hoffman, M.: Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics, Appl. Phys. Lett., 106, 222904, (2015).
22 Acosta, M., Schmitt, L., Cazorla, A.C., Studer, A., Zintler, A., Glaum, J., Kleebe, H.J., Donner, W., Hoffman, M., Rödel, J., Hinterstein, M.: Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics., Sci Rep., 6, 28742, (2016).
23 Viola, G., Ning, H., Reece, M.J., Wilson, R., Correia, T.M., Weaver, P., Cain, M.G., Yan, H.: Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics, J. Phys. D: Appl. Phys., 45, 1 – 7, (2012).
24 Ge, W., Li, J., Viehland, D., Luo, H.: Influence of mn doping on the structure and properties of Na0.5Bi0.5TiO3 single crystals, J. Am. Ceram. Soc., 93, 1372 – 1377, (2010)
25 Simons, H., Daniels, J., Jo, W., Dittmer, R., Studer, A., Avdeev, M., Rödel, J., Hoffman, M.: Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3-6%BaTiO3, Appl. Phys. Lett., 98, 1 – 4, (2011).
26 Klein, N., Hollenstein, E., Damjanovic, D., Trodahl, H.J., Setter, N.: A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and raman spectroscopy, J. Appl. Phys., 102, 014112, (2007).
27 Cheng, L.-Q., Wang, K., Yao, F.-Z., Zhu, F., Li, J.-F.: Composition inhomogeneity due to alkaline volatilization in li-modified (K, Na)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 96, 2693 – 2695, (2013).
28 Schmitt, L.A., Hinterstein, M., Kleebe, H.-J., Fuess, H.: Comparative study of two lead-free piezoceramics using diffraction techniques, J. Appl. Cryst., 43, 805 – 810, (2010).
29 Dippel, A.-C., Liermann, H.-P., Delitz, J.T., Walter, P., Schulte-Schrepping, H., Seeck, O.H., Franz, H.: Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction, J. Synchrotron. Rad., 22, 1 – 4, (2015).
30 Herklotz, M., Scheiba, F., Hinterstein, M., Nikolowski, K., Knapp, M., Dippel, A.-C., Giebeler, L., Eckert, J., Ehrenberg, H.: Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, hamburg, J. Appl. Cryst., 46, 1117 – 1127, (2013).
31 Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, 192, 55 – 69, (1993).
32 Hastings, J.B., Thomlinson, W., Cox, D.E.: Synchrotron X-ray powder diffraction, J. Appl. Cryst., 17, 85 – 95, (1984).
33 Finger, L. W., Cox, D. E., Jephcoat, A. P.: A correction for powder diffraction peak assymetry due to axial divergence, J. Appl. Cryst., 27 892 – 900 (1994)
34 Olsen, G.H.: Texturing of lead-free piezoelectric ceramics, In: Department of Materials Science and Engineering. Master of Science Trondheim: Norwegian University of Science and Technology, 1 – 96, 2012.
35 Bah, M., Giovannelli, F., Retoux, R., Bustillo, J., Clezio, E.L., Monot-Laffez, I.: Crystal growth and piezoelectric properties of Lead-free based K0.5Na0.5NbO3 by the floating zone method, Cryst. Growth Des., 16, 315 – 324, (2016).
36 Liu, M., Hsia, K.J., Jr., M.S.: In situ X-ray diffraction study of electric field induced domain switching and phase transition in PZT-5H, J. Am. Ceram. Soc., 88, 210 – 215, (2005).
37 Davis, M., Damjanovic, D., Setter, N.: Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals, Phys. Rev. B, 73, 014115:1 – 16, (2006).
38 Franzbach, D.J. Gu, Y.J., Chen, L.Q., Webber, K.G.: Electric field-induced tetragonal to orthorhombic phase transitions in [110]c-oriented BaTiO3 single crystals, Appl. Phys. Lett., 101, 232904:1 – 4, (2012).
39 Chen, W., Lynch, C.S.: A Micro-electro-mechanical model for polarisation switching of ferroelectric materials, Acta. Mater., 46, 5303 – 5311, (1998).
Copyright
Göller Verlag GmbH