• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Microstructure and Mechanical Properties of Cf/SiC Composites Reinforced with Boron Nitride Nanowires

G. Zhu1,2,3, S. Dong1,2, J. Hu1,2, Y. Kan1,2, L. Gao1,2, X. Zhang1,2, Z. Wang1,2, Y. Ding1,2

1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
2 Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3 University of Chinese Academy of Sciences, Beijing 100049, China

received August 31, 2016, received in revised form October 20, 2016, accepted November 11, 2016

Vol. 8, No. 1, Pages 31-38   DOI: 10.4416/JCST2016-00064

Abstract

Boron nitride nanowires (BNNWs) were first grown in situ into fiber preforms, and then Cf/SiC composites reinforced with the BNNWs were fabricated by means of chemical vapor infiltration (CVI) matrix densification. It was found that thanks to the incorporation of the BNNWs, the matrix of the Cf/SiC composites at micron scale is toughened notably, as evidenced by the results of indentation tests. Synergetic strengthening and toughening mechanisms including debonding, fracture, pullouts as well as crack branching and deflection attributed to BNNW-based micro-rods are observed. However, no significant increases in flexural strength and fracture toughness are obtained for the composites, possibly owing to the lower density of composites and strong interface bonding between the BNNWs and the matrix.

Download Full Article (PDF)

Keywords

Ceramic matrix composites, boron nitride nanowires, bending test, microindentation, toughness

References

1 Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion technology applications, Acta Astronaut., 55, 409 – 420, (2004).

2 Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview, Compos. Sci. Technol., 64, 155 – 170, (2004).

3 Krenkel, W.: Ceramic matrix composites: Fiber reinforced ceramics and their applications. Wiley-VCH, Weinheim, 2008.

4 Naslain, R.R.: The design of the fibre-matrix interfacial zone in ceramic matrix composites, Composites Part A, 29, 1145 – 1155, (1998).

5 Yang, W., Kohyama, A., Katoh, Y., Araki, H., Yu, J., Noda, T.: Effect of C and SiC/C interlayers on mechanical behavior of Tyranno-SA fiber-reinforced SiC matrix composites, J. Am. Ceram. Soc., 86, 851 – 856, (2003).

6 Naslain, R.R., Pailler, R.J.F., Lamon, J.L.: Single-and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview, Int. J. Appl. Ceram. Tec., 7, 263 – 275, (2010).

7 Jia, Y., Li, K., Xue, L., Ren, J., Zhang, S., Zhang, X.: Microstructure and mechanical properties of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites, Mater. Des., 86, 55 – 60, (2015).

8 Yang, W., Araki, H., Kohyama, A., Thaveethavorn, S., Suzuki, H., Noda, T.: Process and mechanical properties of in situ silicon carbide-nanowire-reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite, J. Am. Ceram. Soc., 87, 1720 – 1725, (2004).

9 Qian, H., Greenhalgh, E.S., Shaffer, M.S., Bismarck, A.: Carbon nanotube-based hierarchical composites: A review, J. Mater. Chem., 20, 4751 – 4762, (2010).

10 Chou, T.W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.H.: An assessment of the science and technology of carbon nanotube-based fibers and composites, Compos. Sci. Technol., 70, 1 – 19, (2010).

11 Hu, J., Dong, S., Zhang, X., Zhou, H., Wu, B., Wang, Z., Gao, L.: Process and mechanical properties of carbon/carbon-silicon carbide composite reinforced with carbon nanotubes grown in situ, Composites Part A, 48, 73 – 81, (2013).

12 Hu, J., Dong, S., Feng, Q., Zhou, M., Wang, X., Cheng, Y.: Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites, Carbon, 69, 621 – 625, (2014).

13 Sun, K., Yu, J., Zhang, C., Zhou, X.: In situ growth carbon nanotube reinforced SiCf/SiC composite, Mater. Lett., 66, 92 – 95, (2012).

14 Zhi, C.Y., Bando, Y., Wang, W.L.L., Tang, C.C., Kuwahara, H., Golberg, D.: Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites, J. Nanomater., 2008, 1 – 5, (2008).

15 Huo, K.F., Hu, Z., Chen, F., Fu, J.J., Chen, Y., Liu, B.H., Ding, J., Dong, Z.L., White, T.: Synthesis of boron nitride nanowires, Appl. Phys. Lett., 80, 3611 – 3613, (2002).

16 Chen, Y.J., Chi, B., Mahon, D.C., Chen, Y.: An effective approach to grow boron nitride nanowires directly on stainless-steel substrates, Nanotechnology, 17, 2942 – 2946, (2006).

17 Qiu, Y.J., Yu, J., Rafique, J., Ying, J., Bai, X.D., Wang, E.: Large-scale production of aligned long boron nitride nanofibers by multijet/multicollector electrospinning, J. Phys. Chem. C, 2009, 11228 – 11234, (2009).

18 Ahmad, P., Khandaker, M.U., Khan, Z.R., Amin, Y. M.: A simple technique to synthesize pure and highly crystalline boron nitride nanowires, Ceram. Int., 40, 14727 – 14732, (2014).

19 Zhi, C.Y., Bando, Y., Tang, C.C., Golberg, D.: Boron nitride nanotubes, Mater. Sci. Eng., R, 70, 92 – 111, (2010).

20 Pakdel, A., Zhi, C.Y., Bando, Y., Golberg, D.: Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256 – 265, (2012).

21 Zhi, C.Y., Bando, Y., Tang, C.C., Huang, Q., Golberg, D.: Boron nitride nanotubes: Functionalization and composites, J. Mater. Chem., 18, 3900 – 3908, (2008).

22 Lahiri, D., Hadjikhani, A., Zhang, C., Xing, T., Li, L. H., Chen, Y., Agarwal, A.: Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: microstructure, mechanical properties and deformation behavior, Mater. Sci. Eng., A, 574, 149 – 156, (2013).

23 Zhu, G., Dong, S., Hu, J., Kan, Y., He, P., Gao, L., Zhang, X., Zhou, H.: In situ growth behavior of boron nitride nanotubes on the surface of silicon carbide fibers as hierarchical reinforcements, RSC Adv., 6, 14112 – 14119, (2016).

24 Chen, Y., Chadderton, L.T., Gerald, J.F., Williams, J.S.: A solid-state process for formation of boron nitride nanotubes, Appl. Phys. Lett., 74, 2960 – 2962, (1999).

25 Chadderton, L.T., Chen, Y.: Nanotube growth by surface diffusion, Phys. Lett. A, 263, 401 – 405, (1999).

26 Zhang, H., Yu, J., Chen, Y., Fitz Gerald, J.: Conical boron nitride nanorods synthesized via the ball-milling and annealing method, J. Am. Ceram. Soc., 89, 675 – 679, (2006).

27 Tatarko, P., Grasso, S., Chlup, Z., et al.: Toughening effect of multi-walled boron nitride nanotubes and their influence on the sintering behaviour of 3Y-TZP zirconia ceramics, J. Eur. Ceram. Soc., 34, 1829 – 1843, (2014).

28 Wang, W.L., Bi, J.Q., Wang, S.R., Sun, K.N., Du, M., Long, N.N., Bai, Y.J.: Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes, J. Eur. Ceram. Soc., 31, 2277 – 2284, (2011).

29 Yang, W., Araki, H., Tang, C., Thaveethavorn, S., Kohyama, A., Suzuki, H., Noda, T.: Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites, Adv. Mater., 17, 1519 – 1523, (2005).

30 Tatarko, P., Grasso, S., Porwal, H., Chlup, Z., Saggar, R., Dlouhý, I., Reece, M.J.: Boron nitride nanotubes as a reinforcement for brittle matrices, J. Eur. Ceram. Soc., 34, 3339 – 3349, (2014).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH