Articles
All articles | Recent articles
″Moonie Type″ of Piezoelectric Transformer as a Magnetic Field Detector
L. Kozielski1, M. Bućko2
1 Institute of Technology and Mechatronics, University of Silesia, 12 Źytnia St.,41 – 200 Sosnowiec, Poland
2 AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, Krakow, Poland
received August 17, 2016, received in revised form November 18, 2016, accepted December 20, 2016
Vol. 8, No. 1, Pages 13-18 DOI: 10.4416/JCST2016-00054
Abstract
The present study proposes a new method for determining magnetic field intensities from a composite piezoelectric – magnetostrictive transformer response. In contrast to the previous detector models, which utilize more popular piezoelectric transformer geometries, in the present method the authors introduce the high voltage amplification effect of the "Moonie" transformer. An increased inherent voltage response to the magnetic field is an added value of this almost unknown piezoelectric transformer structure. The new device overcomes several deficiencies of previous detectors. Such drawbacks include the inability to use conventional multimeters instead of lock-in amplifiers due to the low signal to noise ratio. Consequently, the presented device provides low cost and is undisturbed by the noise magnetic field measurements, taking advantage of the "resonant personality" of this disk-type transformer and its exclusively high voltage gain.
To summarize, the paper introduces an efficient method of magnetism sensing based on Moonie piezoelectric transformer geometry within which the force of magnetic field changes its performance. The voltage gain characteristics confirmed the excellent sensitivity and linearity of the composite to magnetic field.
Download Full Article (PDF)
Keywords
Piezoelectric transformer, magnetic field sensor, magnetoelectric effect, measurement techniques
References
1 Drung, D., Assmann, C., Beyer, J., Kirste, A., Peters, M., Ruede, F., Schurig, Th.: Highly sensitive and easy-to-use SQUID sensors, IEEE T. Appl. Supercon., 17, 699 – 704, (2007).
2 Budker, D., Romalis, M.: Optical magnetometry, Nat. Phys., 3, 227 – 234, (2007).
3 Dong, S., Li, J-F, Viehland, D.: Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals, App. Phys. Lett., 83, 2265 – 2268, (2003).
4 Zhai, J., Xing, Z., Dong, S., Li, J.F., Viehland, D.: Magnetoelectric laminate Composites: An overview, J. Am. Ceram. Soc., 91, 351 – 358, (2008).
5 Wang, Y., Li, J., Viehland, D.: Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives, Mater. Today, 17, 269 – 275, (2014).
6 O'Connor, S.D., Gamble, R.C., Eby, R.K., Baldeschwieler, J.D.: Noise reduction in atomic force microscopy: resonance contact mode, Rev. Sci. Instrum., 67, 393 – 397, (1996).
7 Nan, T., Hui, Y., Rinaldi, M., Sun, N.X.: Self-biased 215MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection, Nature - Scientific Reports, 3, 1 – 6, (2013).
8 Eaton, P., West, P.: Atomic force microscopy, Oxford University Press, 2010.
9 Carazo, A.V.: Piezoelectric Transformers: an historical review, Actuators, 5, 1 – 22, (2016).
10 Kawai, H., Sasaki, Y., Inoue, T., Inoi, T., Takahashi, S.: High power transformer employing piezoelectric ceramics, Jpn. J. Appl. Phys., 35, 4875 – 5232, (1996).
11 Bian, L., Wen, Y., Li, P.: Field dependence of magneto-mechanical damping in magnetostrictive material for magnetic field sensing, Proc. IEEE Sensors Conference, 996 – 999, (2009).
12 Lv, L., Zhou, J.-P., Guo, Y.-Y., Liu, P., Zhang, H.-W.: Controlling voltage step-up ratio of Rosen-type transformer based on magnetoelectric coupling, J. Phys. D: Appl. Phys., 44, 055002, (2011).
13 Lu, C., Li, P., Wen, Y., Yang, A.: Large self-biased magnetoelectric properties in heterostructure of graded-magnetostrictive layers and a rosen-type piezoelectric transformer, IEEE Sens. J., 15, 402 – 407, (2015).
14 Leung, C.M., Or, S.W., Wang, F., Ho, S.L., Luo, H.: Enhanced magnetoelectric effect in heterostructure of magnetostrictive alloy bars and piezoelectric single-crystal transformer, Rev. Sci. Instrum., 82, 013903, (2011).
15 Wang, F., Shi, W., Tang, Y., Chen, X., Wang, T., Luo, H.: A longitudinal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single-crystal piezoelectric transformer, Appl. Phys. A, 100, 1231 – 1236, (2010).
16 Sebastian, T., Erhart, J.: Bar piezoelectric transformers working in longitudinal mode, Ferroelectrics, 486, 13 – 24, (2015).
17 Karmarkar, M., Dong, S., Li, J.F., Viehland D., Priya, S.: Magnetoelectric laminate based DC magnetic field sensor, Phys. Stat. Sol., 2, 108 – 110, (2008).
18 Erhart, J.: Bulk piezoelectric ceramic transformers, Adv. Appl Ceram., 112, 91 – 96, (2013).
Copyright
Göller Verlag GmbH