Articles
All articles | Recent articles
Zirconia-Mullite Obtained from Co-Precipitated Zirconia-Mullite Composite Powders by SPS
H.Z. Li1, Z.J. Li1, X.D. Luo1, J.Y. Gui2, Z.P. Xie2
1 School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
received August 23, 2016, received in revised form September 11, 2016, accepted September 23, 2016
Vol. 7, No. 4, Pages 417-422 DOI: 10.4416/JCST2016-00059
Abstract
The co-precipitation method is used to fabricate precursor powder. This powder is densified by means of the spark plasma sintering (SPS) technique at 1500 °C with a holding time of 7 min to prepare zirconia-mullite samples. Their density measures up to 97 % of the theoretical density, and the sintered mullite compacts exhibit better strength properties (289 ± 12 MPa) and Hv (9.99 GPa). The mode of fracture is changed with the addition of ZrO2 and extensive fine cleavages are observed on the grain surface. These cleavages join together to form steps, which can absorb more energy. The flexural strength of the samples is almost double that of pure mullite, which is related to the formation of cleavages.
Download Full Article (PDF)
Keywords
Zirconia-mullite, co-precipitation, flexural strength, Vickers hardness, microstructure
References
1 Rendtorff, N.M., Sárez,, G., Sakka, Y., Agliettia, E.F.: Dense mullite zirconia composites obtained from the reaction sintering of milled stoichiometric alumina zircon mixtures by SPS, Ceram. Int., 40, 4461 – 4470, (2014).
2 Khor, K.A., Yu, L.G., Li, Y., Dong, Z.L., Munir, Z.A.: Spark plasma reaction sintering of ZrO2/mullite composites from plasma spheroidized zircon/alumina powders, J. Mater. Sci. Eng. A, 339, 286 – 296, (2003).
3 Kong, L.B., Zhang, T.S., Ma, J., Boey, F., Zhang, R.F.: Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2, J. Alloy. Compd., 372, 290 – 299, (2004).
4 Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite: A review, J. Eur. Ceram. Soc., 28, 329 – 344, (2008).
5 Ashrafi, H., Emadi, R., Zamani Foroushani, R.: Synthesis and characterization of mullite-zirconia nanostructured composite by combined mechanical activation and reaction sintering, Adv. Powder Technol., 26, 1452 – 1457, (2015).
6 Cameron, W.E.: Mullite: A substituted alumina, Am. Mineral., 62, 747 – 755, (1977).
7 Angel, R.J., Prewitt, C.T.: Crystal-structure of mullite: A re-examination of the average structure, Am. Mineral., 71, 1476 – 1482, (1986).
8 Amutharani, D., Gnanam, F.D.: Low temperature pressureless sintering of sol-gel derived mullite, Mater. Sci. Eng. A, 264, 254 – 261, (1999).
9 Zhang, G., Wang, Y., Fu, Z., Wang, H., Wang, W., Zhang, J., Lee, S.W., Niihara, K.: Transparent mullite ceramic from single-phase gel by spark plasma sintering, J. Eur. Ceram. Soc., 29, 2705 – 2711, (2009).
10 Kong, L.B., Zhang, T.S., Ma, J., Boey, F., Zhang, R.F.: Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2, J. Alloy. Compd., 372, 290 – 299, (2004).
11 Hong, S.H., Cermignani, W., Messing, G.L.: Anisotropic grain growth in seeded and B2O3-doped diphasic mullite gels, J. Eur. Ceram. Soc., 16, 133 – 141, (1996).
12 Dong, Y., Hampshire, S., Zhou, J., Ji, Z., Wang, J., Meng, G.: Sintering and characterization of flyash-based mullite with MgO addition, J. Eur. Ceram. Soc., 31, 687 – 695, (2011).
13 Souto, P.M., Menezes, R.R., Kiminami, R.H.G.A.: Effect of Y2O3 additive on conventional and microwave sintering of mullite, Ceram. Int., 37, 241 – 248, (2011).
14 Sedmale, G., Steins, I., Zalite, I., Mezinskis, G.: Microstructure and properties of mullite-ZrO2 ceramics with silicon nitride additive prepared by spark plasma sintering, Ceram. Int., 42, 3745 – 3750, (2016).
15 Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), J. Mater. Sci. Eng. A, 287, 183 – 188, (2000).
16 Rendtorff, N.M., Gómez, S., Gauna, M.R., Conconi, M.S., Suarez, G., Aglietti, E.F.: Dense mullite-zirconia-zirconium titanate ceramic composites by reaction sintering, Ceram. Int., 42, 1563 – 1572, (2016).
17 Munir, Z.A., Anselmi-Tamburini, U.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41, 763 – 777, (2006).
18 Ghahremani, D., Ebadzadeh, T., Maghsodipour, A.: Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters, Ceram. Int., 41, 6409 – 6416, (2015).
19 Carvalho, R.S., Oliveira, F.J., Silva, R.F., Costa, F.M.: Mechanical behaviour of zirconia-mullite directionally solidified eutectics, Mater. Design, 6, 211 – 216, (2014).
20 Doni Jayaseelan, D., Amutha Rani, D., Benny Anburaj, D., Ohji, T.: Pulse electric current sintering and microstructure of industrial mullite in the presence of sintering aids, Ceram. Int., 30, 539 – 543, (2004).
21 Lawn, B.: Fracture of brittle solids, Cambridge University Press, 1993.
22 Garvie, R.C., Hanninck, R.H., Pascoe, R.T.: Ceramic steel? Nature (London), 258, 703 – 704, (1975).
23 Yugeswaran, S., Selvarajan, V., Tok, A.I.Y., Siva Rama Twin step synthesis of mullite and mullite-zirconia composite in low power transferred arc plasma (TAP) torch, Mater. Charact., 62, 419 – 424, (2011).
24 Torrecillas, R., Calderon, J.M., Moya, J.S., Reece, M.J., Davies, C.K.L., Olagnon, C., Fantozzi, G., Suitability of mullite for high temperature applications, J. Eur. Ceram. Soc., 19, 2519 – 2527, (1999).
Copyright
Göller Verlag GmbH