Articles
All articles | Recent articles
Microstructure and Electrical Properties of Co-Doped ZnO Varistors
S. Hamdelou1, K. Guergouri1,2
1 Laboratoire de Physique-chimie des Semiconducteurs, Université des Frères Mentouri-Constantine, Constantine 25000 Algeria.
2 Département de Physique, Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université d'Oum El Bouaghi, 04000, Algeria.
received April 16, 2016, received in revised form August 17, 2016, accepted September 23, 2016
Vol. 7, No. 4, Pages 357-364 DOI: 10.4416/JCST2016-00045
Abstract
Varistor ceramics based on Co-doped ZnO nanopowders were prepared with the sol-gel method. The analysis of the structure shows that the ZnO:Co (1 mol%, 3 mol%, 5 mol% and 7 mol%) has a wurtzite structure without any second phase, the Co ions successfully substitute Zn sites in the ZnO lattice. The grain size of the obtained nanopowders varies between 36 and 210 nm. The microstructure and electrical properties of varistors made of these powders have been studied as a function of the sintering temperature, which ranged between 900 °C and 1075 °C. The varistors were sintered by means of the microwave method. The results obtained show that the grain size of the ZnO nanopowders decreases with increasing Co content, and increases with rising of the sintering temperature, the threshold voltage increases with decreasing grain size with values varying between 99 V/mm and 681.3 V/mm.
Typically, the varistor ceramics with 5 mol% Co sintered at 1000 °C exhibit the best electrical properties with a threshold voltage of 333.5 V/mm and a nonlinear coefficient of 15.32. The results also show that doping with Co atoms is a promising route to obtaining a higher threshold voltage of varistor ceramics based on ZnO nanopowders.
Download Full Article (PDF)
Keywords
Co-doped ZnO varistors, microwave sintering, microstructure, electrical properties
References
1 Xu, D., Cheng, X.-N., Yan, X.-H., Xu, H.-X., Shi, L.-Y.: Sintering process as relevant parameter for Bi2O3 vaporization from ZnO-Bi2O3-based varistor ceramics, T. Nonferr. Metal Soc., 19, 1526 – 1532, (2009).
2 Peng, Z., Fu, X., Zang., Y., Fu, Z., Wang, C., Qi, L., Miao, H.: Influence of Fe2O3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramic materials, J. Alloy Compd., 508, 494 – 499, (2010).
3 Kutty., T.R.N., Ezhilvalavan, S..: The influence of B2O3 non-stoichiometry on the non-linear property of ZnO varistors, Mater. Chem. Phys., 38, 267 – 273, (1994).
4 Nahm, C.W.: Microstructure and varistor properties of Y2O3-doped ZnO-Pr6O11-CoO-Cr2O3-La2O3 ceramics, Ceram. Int., 40, 2477 – 2481, (2014).
5 Peiteado, M., Iglesias, Y., Caballero, A.C.: Sodium impurities in ZnO-Bi2O3-Sb2O3 based varistors, Ceram. Int., 37, 819 – 824, (2011).
6 Chen G, Li, J., Yang, Y., Yuan, C., Zhou, C.: Microstructure and electrical properties of Dy2O3-doped ZnO-Bi2O3 based varistor ceramics, Mater. Res. Bull., 50, 141 – 147, (2014).
7 Gupta, T.K.: Application of zinc oxide varistors, J. Am. Ceram. Soc., 73, 1817 – 1840, (1990).
8 Daneu, N., Gramc, N.N., Recnik, A., Krzmanc, M.M., Bernik, S.: Shock-sintering of low-voltage ZnO-based varistor ceramics with Bi4Ti3O12 additions, J. Eur. Ceram. Soc., 33, 335 – 344, (2013).
9 Shahraki, M.M., Shojaee, S.A., Faghihi Sani, M.A., Nemati, A., Safaee, I.: Two-step sintering of ZnO varistors, Solid State Ionics, 190, 99 – 105, (2011).
10 He, J., Liu, J., Hu, J., Zeng, R., Long, W.: Non-uniform ageing behavior of individual grain boundaries in ZnO varistor ceramics, J. Eur. Ceram. Soc., 31, 1451 – 1456, (2011)
11 Hamdelou, S., Guergouri, K., Arab, L.: The effect of the starting powders particle size on the electrical properties of sintered co doped ZnO varistors, Appl. Nanosci., DOI 10.1007/s13204 – 014 – 0382 – 613, November 2014
12 Cheng, L.-H., Zheng, L.-Y., Meng, L., Li, G.-R., Gu, Y., Zhang, F.-P., Chu, R.-Q., Xu, Z.-J.: Electrical properties of Al2O3-doped ZnO varistors prepared by sol-gel process for device miniaturization, Ceram. Int., 38S, 457 – 461, (2012).
13 Pillai, S.C., Kelly, J.M., McCormack, D.E., O'Brien, P., Raghavendra, R.: The effect of processing conditions on varistors prepared from nanocrystalline ZnO, J. Mater. Chem., 13, 2586 – 2590, (2003).
14 Pillai, S.C., Kelly, J.M., McCormack, D.E., Raghavendra, R.: Effect of step sintering on breakdown voltage of varistors prepared from nanomaterials by sol gel route, Adv. Appl. Ceram., 105, 158 – 160, (2006).
15 Vukovic, M., Brankovic, G., Marinkovic, Stanojevic, Z., Poleti, D., Brankovic, Z.: Ultra-high breakdown field varistors prepared from individually synthesized nanoprecursors, J. Eur. Ceram. Soc., 35, 1807 – 1814, (2015).
16 Subasri, R., Asha, M., Hembram, K., Rao, G., Rao, T.: Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications, Mater. Chem. Phys., 115, 677 – 684, (2009).
17 Onreabroy, W., Sirikulrat, N., Brown, A.P., Hammond, C., Milne, S.J.: Properties and intergranular phase analysis of a ZnO-CoO-Bi2O3 varistor, Solid State Ionics, 177, 411 – 420, (2006).
18 Nahm, C.-W., Shin, B.-C., Park, J.-A., Yoo, D.-H.: Effect of CoO on nonlinear electrical properties of praseodymia-based ZnO varistors, Mater. Lett., 60, 164 – 167, (2006)
19 Miralles, A., Cornet, A., Herms, A., Morante, J.R.: The influence of cobalt on the electrical characteristics of ZnO ceramics, Mat. Sci. Eng. A, 109, 201 – 205, (1989).
20 Arab, L., Hamdelou, S., Harouni, S., Guergouri, K., Guerbous, L.: Structural and luminescence properties of pure and Al-doped ZnO nanopowders, Mat. Sci. Eng B., 177, 902 – 907, (2012).
21 Nahm, C.-W., Park, J.-A., Shin, B.-C., Kim, I.-S.: Electrical properties and DC-accelerated aging behavior of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3-based varistor ceramics, Ceram. Int,, 30, 1009 – 1016, (2004).
22 Wurst, J.C., Nelson, J.A.: Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics, J. Am. Ceram. Soc., 55, 109 – 111, (1972).
23 Onreabroy, W., Sirikulrat, N.: Effects of cobalt doping on nonlinearity of zinc oxide, Mat. Sci .Eng, B, 130, 108 – 113, (2006).
24 Levinson, L.M., Philipp, H.R.: The physics of metal oxide varistors, J. Appl. Phys., 46, 1332, (1975)
25 Santi, M., Laokul, P., Phokha, S.: Simple synthesis and magnetic behavior of nanocrystalline Zn0.9Co0.1O powders by using Zn and Co acetates and polyvinyl pyrrolidone as precursors, J. Magn. Magn. Mater., 305, 381 – 387, (2006).
26 Mesaros, A., Ghitulica, C.D., Popa, M., Mereu, R., Popa, A., Petrisor Jr.,T., Gabor, M., Cadis, A. Vasile, B.S.: Synthesis, structural and morphological characteristics, magnetic and optical properties of co doped ZnO nanoparticles, Ceram. Int,, 40, 2835 – 2846, (2014).
27 Arshad, M., Ahmed, A.S., Azam, A., Naqvi, A.H.: Exploring the dielectric behavior of co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy, J. Alloy. Compd., 577, 469 – 474, (2013).
28 Nirmala, M., Anukaliani, A.: Characterization of undoped and co doped ZnO nanoparticles synthesized by DC thermal plasma method, Physica B, 406, 911 – 915, (2011).
29 Badev, A., Marinel, S., Heuguet, R., Savary, E., Agrawal, D.: Sintering behavior and non-linear properties of ZnO varistors processed in microwave electric and magnetic fields at 2.45 GHz, Acta. Mater., 61, 7849 – 7858, (2013).
30 Kim, C.-H., Kim, J.-H.: Microstructure and electrical properties of ZnO-ZrO2-Bi2O3-M3O4 (M=Co, Mn) varistors, J. Eur. Ceram. Soc., 24, 2537 – 2546, (2004).
31 Long, W., Hu, J., Liu, J., He, J.: Effects of cobalt doping on the electrical characteristics of Al-doped ZnO varistors, Mater. Lett., 64, 1081 – 1084, (2010).
32 Lin, C.-C., Lee, W.-S., Sun, C.C., Whu, W.-H.: The influences of bismuth antimony additives and cobalt manganese dopants on the electrical properties of ZnO-based varistors, Compos. Part B – Eng., 38, 338 – 344, (2007).
Copyright
Göller Verlag GmbH