Articles
All articles | Recent articles
Microstructure and Mechanical Properties of Ternary Ceramic Composites with a ZrC-SiC Matrix
B.X. Ma, S.H. Xu
School of Materials Science and Engineering, Harbin University of Science and technology, No. 4 Linyuan Road, Haerbin 150040, P. R. China
received May 16, 2016, received in revised form July 11, 2016, accepted August 29, 2016
Vol. 7, No. 4, Pages 335-340 DOI: 10.4416/JCST2016-00039
Abstract
ZrC-SiC-ZrSi2 ternary ceramic composites were prepared by means of hot pressing. The effect of the ZrSi2 content on the microstructure and mechanical properties of the fabricated materials was investigated. It was found that the addition of ZrSi2 is effective in promoting the sinterability of ZrC-SiC-ZrSi2 ternary composites, and the highest relative density reaches 98.8 % when the ZrSi2 content is 10 vol%. ZrSi2 particles in the microstructure are characterized by an irregular shape with low dihedral angles, which is beneficial for the densification of the composites. The hardness of the composites shows no great variation with the increase in the ZrSi2 content and changes between 14 and 17 GPa. The highest flexural strength, 520 MPa, is obtained for the composite of ZS5Z containing 5 vol% ZrSi2.
Download Full Article (PDF)
Keywords
ZrC-SiC, ZrSi2, microstructure, mechanical properties
References
1. Goutier, F., Trolliard, G., Valette, S., Maître, A., Estournes, C.: Role of impurities on the spark plasma sintering of ZrCx-ZrB2 composites, J. Eur. Ceram. Soc., 28, 671 – 678, (2008).
2. Das, B.P., Panneerselvam, M., Rao, K.J.: A novel microwave route for the preparation of ZrC-SiC composites, J. Solid. State. Chem., 173, 196 – 202, (2003).
3. Bandyopadhyay, T.K., Das, K.: Processing and characterization of ZrC-reinforced steel-based composites, J. Mater. Process. Tech., 178, 335 – 341, (2006).
4. Patra, N., Jayaseelan, D.D., Lee, W.E.: Synthesis of biopolymer-derived zirconium carbide powder by facile one-pot reaction, J. Am. Ceram. Soc., 98, 71 – 77, (2014).
5. Opeka, M.M., Talmy, I.G., Zaykoski, J.A.: Oxidation-based materials selection for 2000 oC + hypersonic aero surfaces: theoretical considerations and historical experience, J. Mater. Sci., 39, 5887 – 5904, (2004).
6. Jackson, T.A., Eklund, D.R., Fink, A.J.: High speed propulsion: performance advantage of advanced materials, J. Mater. Sci., 39, 5905 – 5913, (2004).
7. Sciti, D., Guicciardi, S. Nygren, M.: Spark plasma sintering and mechanical behaviour of ZrC-based composites, Scripta Mater., 59, 638 – 641, (2008).
8. Núñez-González, B., Ortiz, A.L., Guiberteau, F., Padture, N.P.: Effect of MoSi2 content on the lubricated sliding-wear resistance of ZrC-MoSi2 composites, J. Eur. Ceram. Soc., 31, 877 – 882, (2011).
9. Lucas, R., Davis, C.E., Clegg, W.J., Pizon, D., Babonneau, F., Foucaud, S., Antou, G., Maître, A.: Elaboration of ZrC-SiC composites by spark plasma sintering using polymer-derived ceramics, Ceram. Int., 40, 15703 – 15709, (2014).
10. Zhao, L.Y., Jia, D.C., Duan, X.M., Yang, Z.H., Zhou, Y.: Low temperature sintering of ZrC-SiC composite, J. Alloy. Compd., 509, 9816 – 9820, (2011).
11. Voltsihhin, N., Hussainova, I., Kübarsepp, J., Traksmaa, R.: Processing and mechanical properties of ZrC-ZrO2 composites, Key. Eng. Mater., 604, 258 – 261, (2014).
12. Hussainova, I., Voltšihhin, N., Cura, E., Hannula, S.P.: Densification and characterization of spark plasma sintered ZrC-ZrO2 composites, Mat. Sci. Eng. A., 597, 75 – 81, (2014).
13. Min-Haga, E., Scott, W.D.: Sintering and mechanical properties of ZrC-ZrO2 composites, J. Mater. Sci., 23, 2865 – 2870, (1988).
14. Landwehr, S.E., Hilmas, G.E., Fahrenholtz, W.G., Talmy, I.G., Wang, H.: Thermal properties and thermal shock resistance of liquid phase sintered ZrC-mo cermets, Mater. Chem. Phys., 115, 690 – 695, (2009).
15. Landwehr, S.E., Hilmas, G.E., Fahrenholtz, W.G., Talmy, I.G., DiPietro, S.G.: Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing, Mat. Sci. Eng. A.., 497, 79 – 86, (2008).
16. Zhao, L.Y., Jia, D.C., Duan, X.M., Yang, Z.H., Zhou, Y.: Oxidation of ZrC-30 vol% SiC composite in air from low to ultrahigh temperature, J. Eur. Ceram. Soc., 32, 947 – 954, (2012).
17. Sarin, P., Driemeyer, P.E., Haggerty, R.P., Kim, D.K., Bell, J.L., Apostolov, Z.D., Kriven, W.M.: In situ studies of oxidation of ZrB2 and ZrB2 -SiC composites at high temperatures, J. Eur. Ceram. Soc., 30, 2375 – 2386, (2010).
18. Wu, H.T., Zhang, W.G.: Fabrication and properties of ZrB2-SiC-BN machinable ceramics, J. Eur. Ceram. Soc., 30, 1035 – 1042, (2010).
19. Wang, X.G., Zhang, G.J., Xue, J.X. Tang, Y., Huang, X., Xu, C.M., Wang, P.L.: Reactive hot pressing of ZrC-SiC ceramics at low temperature, J. Am. Ceram. Soc., 96, 32 – 36, (2013).
20. Guo, S.Q., Kagawa, Y., Nishimura, T.: Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2, J. Eur. Ceram. Soc., 29, 787 – 794, (2009).
21. Wang, M.F., Wang, C.A., Zhang, X.H.: Effects of SiC platelet and ZrSi2 additive on sintering and mechanical properties of ZrB2-based ceramics by hot-pressing, Mater. Design., 34, 293 – 297, (2012).
22. Guo, S.Q., Nishimura, T., Kagawa, Y.: Low-temperature hot pressing of ZrB2-based ceramics with ZrSi2 additives, Int. J. Appl. Ceram. Tec., 8, 1425 – 1435, (2011).
23. Guo, S.Q., Kagawa, Y., Nishimura, T., Tanaka, H.: Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2, additive, Scripta Mater., 58, 579 – 582, (2008).
24. Ma, B.X., Zhang, X.H., Han, J.C., Han, W.B.: Microstructure and mechanical properties of ZrC-SiC-Cg ceramic prepared by hot pressing, Rare Metal. Mat. Eng., 38, 890 – 893, (2009).
25. Sonber, J.K., Murthy, T.S.R.C., Subramanian, C., Krishnamurthy, N., Hubli, R.C., Suri, A.K.: Effect of CrSi2 and HfB2 addition on densification and properties of ZrB2, Int. J. Refract. Met. H., 31, 125 – 131, (2012).
Copyright
Göller Verlag GmbH