• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Low-Temperature Degradation Behaviour and Mechanical Properties of a 3Y-TZP Manufactured from Detonation-Synthesized Powder

F. Kern, V. Lindner, R. Gadow

University of Stuttgart, IFKB

received May 12, 2016, received in revised form July 15, 2016, accepted August 18, 2016

Vol. 7, No. 4, Pages 313-322   DOI: 10.4416/JCST2016-00036

Abstract

In recent years, yttria-stabilized zirconia Y-TZP has attracted considerable interest in the field of dental restoration. However, the state-of-the-art Y-TZP materials made from coprecipitated powders only just comply with the current standard in terms of fracture resistance and grain size. In this study a new nanoscale starting powder produced with detonation synthesis was applied to produce a fully dense specimen by means of hot pressing in the sintering temperature range between 1250 – 1500 °C. Mechanical properties, microstructure and phase composition were studied. Low-temperature degradation behavior was quantified in an accelerated ageing test in a saturated water vapor at 134 °C. Between sintering temperatures of 1300 °C and1400 °C, the materials obtained show a combination of high strength > 1400 MPa, toughness of 6 MPa√m and fine grain size < 320 nm and thus fulfill the requirements of the dental standard EN ISO 6872. Ageing resistance was high. After nucleation of the monoclinic content, the materials exhibited zero-order growth kinetics and retained > 90 % tetragonal phase up to ageing times of 10 h ≈ 35 years in vivo.

Download Full Article (PDF)

Keywords

Zirconia, mechanical properties, phase composition, microstructure, low-temperature degradation

References

1 Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, 461 – 87, (2000).

2 Kelly P.M., Rose, L.R.F.: The martensitic transformation of ceramics – its role in transformation toughening, Prog. Mater. Sci., 67, 463 – 557, (2002).

3 Li, P., Chen, I.W., Penner-Hahn, J.: Effect of dopants on zirconia stabilization – an x-ray absorption study: I, trivalent dopants, J. Am. Ceram. Soc., 77, 118 – 28, (1994).

4 Chen, M., Hallstedt, B., Gauckler, L.: Thermodynamic modeling of the ZrO2-YO1.5 system, Solid State Ionics, 170, 255 – 274, (2004).

5 Ruiz, L., Readey, M.J.: Effect of heat treatment on grain size, phase assemblage and mechanical properties of 3Y-TZP, J. Am. Ceram. Soc., 79, 2331 – 2340, (1996).

6 Singh, R., Gill, C., Lawson, S., Dransfield, G.P.: Sintering, microstructure and mechanical properties of commercial Y-TZPs, J. Mater. Sci., 31, 6055 – 62, (1996).

7 Burger, W., Richter, H.G., Picconi, C., Vatteroni, R., Cittadini, A., Boccalari, M.: New Y-TZP powders for medical grade zirconia, J. Mater. Sci. – Mater. M, 8, 113 – 8, (1997).

8 Ohnishi, H., Naka, H., Sekino, T., Ikuhara, Y., Niihara, K.: Mechanical properties of 2.0 – 3.5 mol% Y2O3-stabilized zirconia polycrystals fabricated by the solid phase mixing and sintering method, J. Ceram. Soc. Jpn.,116, 1270 – 1277, (2008).

9 Kern, F.: Mechanical properties and low temperature degradation resistance of 2.5Y-TZP – alumina composites, Materialy Ceramiczne/Ceramic Materials, 65, 258 – 266, (2013).

10 Schubert, H., Frey, F.: Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations, J. Eur. Ceram. Soc., 25, 1597 – 602, (2005).

11 Chevalier, J., Gremillard, L., Virkar, A.V., Clarke, D.R.: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 92, 1901 – 1920, (2009).

12 Chevalier, J., Gremillard, L. Deville, S.: Low temperature degradation of zirconia and implications for biomedical implants, Annu. Rev. Mater. Res., 37, 1 – 32, (2007).

13 Chevalier, J., Drouin, J.M., Cales, B.: Low-temperature aging of Y-TZP ceramics, J. Am. Ceram. Soc., 82, 2150 – 54, (1999).

14 Gremillard, L., Chevalier, J., Epicier, T., Deville, S., Fantozzi, G.: Modeling the aging kinetics of zirconia ceramics, J. Eur. Ceram. Soc., 24, 3483 – 3489, (2004).

15 Deville, S., Gremillard, L., Chevalier, J., Fantozzi, G.: A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia, J. Biomed. Mater. Res. B, 72, 239 – 245, (2005).

16 Neves, N., Barros, R., Antunes, E., Calado, J., Fortunato, E., Martins, R., Ferreira, I.: Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: processing and application, J. Eur. Ceram. Soc., 32, 4381 – 4391, (2012).

17 Neves, N., Lagoa, L., Calado, J., Rego, A.M.B., Fortunato, E., Martins, R., Ferreira, I.: Al-doped ZnO nanostructured powders by emulsion detonation synthesis – improving materials for high quality sputtering targets manufacturing, J. Eur. Ceram. Soc., 34, 2325 – 38, (2014).

18 Calado, J.: Ceramic powder production with emulsion detonation synthesis, cfi/Ber. DKG, 93, [4 – 5], E32 – E34, (2016).

19 Calado, J., Innovation through detonation: designing improved ceramic composites, Ceramic Industry (online), March 1 (2016)

20 Calado, J., Dos Santos, E.: Nanocrystaline spherical ceramic oxides, process for the synthesis and use thereof, US patent 9249020 B2.

21 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, C119 – C121, (1984).

22 Patterson, A.L.: The scherrer formula for X-Ray particle size determination, Phys. Rev., 56, 978 – 82, (1939).

23 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture Toughness: II, strength method, J. Am. Ceram. Soc., 64, 539 – 543, (1981).

24 Niihara, K.: A fracture mechanics analysis of indentation-induced palmqvist crack in ceramics, J. Mater. Sci. Lett., 2, 221 – 223, (1983).

25 Dransmann, G.W., Steinbrech, R.W., Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., Heuer, A.: Indentation studies on Y2O3-Stabilized ZrO2: II, toughness determination from stable growth of Indentation-Induced cracks, J. Am. Ceram. Soc., 77, 1194 – 1201, (1994).

26 Benzaid, R., Chevalier, J., Saâdaoui, M., Fantozzi, G., Nawa, M., Diaz, L.A., Torrecillas, R.: Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications, Biomaterials, 29, 3636 – 41, (2008).

27 Kosmac, T., Wagner, R., Claussen, N.: X-Ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, [4], C72 – 3, (1981).

28 McMeeking, R.M., Evans, A.G.: Mechanics of Transformation-Toughening in brittle materials, J. Am. Ceram. Soc., 65, [5], 242 – 46, (1982).

29 Mendelson, M.I.: Grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, 443 – 444, (1969).

30 Kern, F.: 2.5Y-TZP from yttria-coated pyrogenic zirconia nanopowder, J. Ceram. Sci. Tech., 1, 21 – 26, (2010).

31 Lube, T., Fett, T.: A threshold stress intensity factor at the onset of stable crack extension of knoop indentation cracks, Eng. Fract. Mech., 71, 2263 – 69, (2004).

32 Keuper, M., Eder, K., Berthold, C., Nickel, K.G.: Direct evidence for continuous linear kinetics in the low-temperature degradation of Y-TZP, Acta Biomater., 9, 4826 – 35, (2013).

33 Swain, M.V., Rose, L.R.F.: Strength limitations of transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, 511 – 518, (1986).

34 Basu, B., Vleughels, J., Van der Biest, O.: Toughness tailoring of yttria-doped zirconia ceramics, Mat. Sci. Eng. A, 380, 215 – 221, (2004).

35 Bartholomé, J.F., Montera, I., Diaz, M., Lopez-Esteban, S., Moya J.S.: Accelerated aging in 3-mol%-yttria-stabilized tetragonal zirconia ceramics sintered in reducing conditions, J. Am. Ceram. Soc., 87, 2282 – 2285, (2004).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH