Articles
All articles | Recent articles
The Influence of Stabilizer Concentration on the Mechanical Properties of Alumina – 17 vol% Zirconia (0.6Y-2Y) Composites
F. Kern, S. Koummarasy, R. Gadow
University of Stuttgart, IFKB, Allmandring 7B, D-70569 Stuttgart Germany
received May 2, 2016, received in revised form May 10, 2016, accepted June 15, 2016
Vol. 7, No. 3, Pages 295-300 DOI: 10.4416/JCST2016-00034
Abstract
Zirconia-toughened alumina (ZTA) with a zirconia content close to the percolation threshold has become the state-of-the art ceramic material for hip implants. In this study the stabilizer content in a ZTA with 17 vol% zirconia was varied between 0.6 – 2 mol% Y2O3 to understand more about the influence of the stabilizer concentration on mechanical properties, phase composition and formation of residual stress. It was found that fracture resistance reaches its maximum close to the stress neutral state where transformation stresses equilibrate residual cooling stresses while compressive stress in the alumina matrix favors higher strength.
Download Full Article (PDF)
Keywords
Ceramics, mechanical properties, zirconia, alumina, residual stress
References
1 Senthil Kumar, A., Raja Durai, A., Sornakumar, T.: Machinability of hardened steel using alumina based ceramic cutting tools, Int. J. Refract. Met. H., 21, 109 – 117, (2003).
2 He, Y.J., Winnubst, A.J.A., Schipper, D.J., Bakker, P.M.V., Burggraaf, A.J., Verweij, H.: Friction and wear behaviour of ceramic-hardened steel couples under reciprocating sliding motion, Wear, 184, 33 – 43, (1995).
3 Burger, W., Richter, H.G.: High strength and toughness alumina matrix composites by transformation toughening and "in situ" platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng. Mat., 192 – 195, 545 – 548, (2001).
4 Kuntz, M.: Validation of a new high performance alumina matrix composite for use in total joint replacement, Seminars in Arthroplasty, 17, 141 – 145, (2006).
5 Chevalier, J., Grandjean, S., Kuntz, M., Pezzotti, G.: Activation energy for polymorphic transformation in an advanced Alumina/Zirconia composite for arthroplastic applications, Biomaterials, 30, 5279 – 5282, (2009).
6 Wang, J., Stevens, R.: Review Zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci, 24, 3421 – 3440, (1989).
7 Claussen, N.: Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase, J. Am. Ceram. Soc., 59, 49 – 51, (1976).
8 Lange, F.F.: Transformation toughening – Part 4: fabrication, fracture toughness and strength of Al2O3 - ZrO2 composites, J. Mater. Sci., 17, 247 – 254, (1982).
9 Hannink, R.H. J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, 461 – 487, (2000).
10 Heuer, A.H., Claussen, N., Kriven, W., Rühle, W.: Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc. 65, 642 – 650, (1982).
11 Gregori, G., Burger,W., Sergo,V.: Piezo-spectroscopic analysis of the residual stresses in zirconia-toughened alumina ceramics: The influence of the tetragonal-to-monoclinic transformation, Mat. Sci. Eng. A, 271, 401 – 406, (1999).
12 Gutknecht, D., Chevalier, J., Garnier, V., Fantozzi, G.: Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application, J. Eur. Ceram. Soc., 27, 1547 – 1552, (2007).
13 Langlois, R., Konsztowicz, K.J.: Toughening in zirconia-toughened alumina composites with non-transforming zirconia, J. Mater. Sci. Lett. 11, 1454 – 1456, (1992).
14 Exare, C., Kiat, J.-M., Guiblin, N., Porcher, F., Petricek, V.: Structural evolution of ZTA composites during synthesis and processing, J. Eur. Ceram. Soc., 35, 1273 – 1283, (2015).
15 Sommer, F., Landfried, R., Kern, F., Gadow, R.: Mechanical properties of zirconia toughened alumina with 10 – 24 vol% 1.5 mol% Y-TZP reinforcement, J. Eur. Ceram. Soc., 32, 3905 – 3910, (2012).
16 Sommer, F., Landfried, R., Kern, F., Gadow, R.: Mechanical properties of zirconia toughened alumina with 10 – 24 vol% 1Y-TZP reinforcement, J. Eur. Ceram. Soc., 32, 4177 – 4184, (2012).
17 Kern, F., Gadow, R.: Alumina toughened zirconia from yttria coated powders, J. Eur. Ceram. Soc., 32, 3911 – 3918, (2012).
18 Evans, A.G., Charles, E.A.: Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59, 371 – 372, (1976).
19 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc., 64, 539 – 543, (1981).
20 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, C119 – C121, (1984).
21 Kosmac, T., Wagner, R., Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, C72-C73, (1981).
22 McMeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc., 65, 242 – 246, (1982).
23 Kelly, P.M., Rose, L.R.F.: The martensitic transformation of ceramics – its role in transformation toughening, Progr. Mat. Sci., 67, 463 – 557, (2002).
24 Quinn, G.D., Bradt, R.C.: On the vickers indentation fracture toughness test, J. Am. Ceram. Soc., 90, 673 – 680, (2007).
25 Taya, M., Hayashi, S., Kobayashi, A.S., Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 73, 1382 – 1391, (1990).
26 Niihara, K.: A fracture mechanics analysis of indentation-induced palmqvist crack in ceramics, J. Mater. Sci. Lett., 2, 221 – 223, (1983).
Copyright
Göller Verlag GmbH