Articles
All articles | Recent articles
Production of β-Silicon Carbide Nanofibers using the Forcespinning® Method
A. Salinas1, A. Altecor1, M. Lizcano2, K. Lozano1
1 The University of Texas Pan American, Mechanical Engineering Department, Edinburg, Texas, 78539 US
2 NASA Glenn Research Center, Cleveland, OH 44135
received November 11, 2015, received in revised form May 24, 2016, accepted June 1, 2016
Vol. 7, No. 3, Pages 229-234 DOI: 10.4416/JCST2016-00026
Abstract
Silicon carbide (SiC) nanofibers were produced on a large scale using the Forcespinning® method. Non-oxide ceramics such as SiC are known for their low density, oxidation resistance, thermal stability, and wear resistance. The nanofibers were prepared using a solution-based method with polystyrene and polycarbomethylsilane as the precursor materials. Fiber spinning was performed under different parameters to obtain high yield, fiber homogeneity, and small diameters. The fibers were spun under a controlled nitrogen environment to prevent fiber oxidation. The resultant nonwoven nanofiber mats were then subjected to different heat treatments to evaluate the effect of these on the crystalline structure. Characterization was conducted using scanning electron microscopy, x-ray diffraction, and thermogravimetric analysis. The results show high yield, semi-continuous bead-free nanofibers with diameters ranging from 280 nm to 2 micron depending on the selected processing parameters. The sintered precursors show formation of SiC nanofibers with a beta phase crystalline structure and oxygen content below 15 %.
Download Full Article (PDF)
Keywords
Silicon carbide, high-temperature materials, ceramic nanofibers, Forcespinning®
References
1 Li, X., Chen, X., Song, H.: Preparation of silicon carbide nanowires via a rapid heating process, Mater. Sci. Eng. B, 176, 87 – 91, (2011).
2 Liu, H.A., Balkus, K.J.: Electrospinning of beta silicon carbide nanofibers, Mater. Lett., 63, 2361 – 2364, (2009).
3 Zhengfang, X., Jiaxin, N., Zhaohui, C.: Synthesis and characterization of molybdenum-modified polycarbosilane for SiC(Mo) ceramics, J. Appl. Pol. Sci., 128, 1834 – 1841, (2012).
4 Zheng, C.-S., Yan, Q.-Z., Xia, M.: Combustion synthesis of SiC/Si3N4-NW composite powders: the influence of catalysts and gases, Ceram. Int., 38, 4549 – 4554, (2012).
5 Andriotis, A.N., Richter, E., Lisenkov, S., Sheetz, R.M., Menon, M., Electronic Structure, Optical Properties and Electronic Conductivity of Silicon Carbide Nanowires, J. Comput. Theor. Nanos., 9, 2008 – 2012, (2012).
6 Wei, J., Li, K., Chen, J., Yuan, H., He, G., Yang, C., Suvaci, E.: Synthesis and growth mechanism of SiC/SiO2nanochains heterostructure by catalyst-free chemical vapor deposition, J. Am. Ceram. Soc., 96, 627 – 633, (2013).
7 Gu, X., Qiang, Y., Zhao, Y., Synthesis, structural and electrical properties of SiC nanowires via a simple CVD method, J. Mater. Sci. – Mater. El., 23, 1037 – 1040, (2011).
8 Huang, Z.-M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223 – 2253, (2003).
9 Li, J., Zhang, Y., Zhong, X., Yang, K., Meng, J., Cao, X.: Single-crystalline nanowires of SiC synthesized by carbothermal reduction of electrospun PVP/TEOS composite fibres, Nanotechnology, 18, 245606, (2007).
10 Eick, B.M., Youngblood, J.P.: SiC nanofibers by pyrolysis of electrospun preceramic polymers, J. Mater. Sci., 44, 160 – 165, (2008).
11 Patel, N., Kawai, R., Oya, A.: Preparation of silicon carbide nanofibers by use of polymer blend technique, J. Mater. Sci., 39, 691 – 693, (2004).
12 Li, Q., Lozano, K., Lü, Y., Mao, Y.: Heterogeneous manganese oxide-encased carbon nanocomposite fibers for high performance pseudocapacitors, J. Ceram. Mater. Energy Applications III (eds H.-T. Lin, Y. Katoh, A. Vomiero, S. Kirihara and S. Widjaja), John Wiley & Sons, Inc., Hoboken, NJ, USA (2013). doi: 10.1002/9781118807934.ch5
13 Altecor, A., Li, Q., Lozano, K., Mao, Y.: Mixed-valent VOx/polymer nanohybrid fibers for flexible energy storage materials, Ceram. Int., 40, 5073 – 5077, (2014).
14 Padron, S., Fuentes, A., Caruntu, D., Lozano, K.: Experimental study of nanofiber production through forcespinning, J. Appl. Phys., 113, 024318, (2013).
15 Rane, Y., Altecor, A., Bell, N.S., Lozano, K.: Preparation of superhydrophobic Teflon® AF 1600 sub-micron fibers and yarns using the forcespinning technique, J. Eng. Fiber. Fabr., 8, 88 – 95, (2013).
16 Vazquez, B., Vasquez, H., Lozano, K.: Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinning, Polym. Eng. Sci., 52, 2260 – 2265, (2012).
17 Raghavan, B., Soto, H., Lozano, K.: Fabrication of melt spun polypropylene nanofibers by forcespinning, J. Eng. Fiber. Fabr., 8, (2013).
18 Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., Lozano, K.: Electrospinning to Forcespinning™, Mater. Today, 13, 12 – 14, (2010).
19 Lozano, K., Altecor, A., Mao, Y.: Large-scale synthesis of tin-doped indium oxide nanofibers using water as solvent, Funct. Mater. Lett., 05, 1250020, (2012).
20 McEachin, Z., Lozano, K.: Production and characterization of polycaprolactone nanofibers via forcespinning™ technology, J. Appl. Polym. Sci., 126, 473 – 479, (2012).
21 Padron, S., Patlan, R., Gutierrez, J., Santos, N., Eubanks, T., Lozano, K.: Production and characterization of hybrid BEH-PPV/PEO conjugated polymer nanofibers by forcespinning™, J. Appl. Polym. Sci., 125, 3610 – 3616, (2012).
22 Nakajima, T., Advanced fiber spinning technology, Elsevier, (1994).
23 Bunsell, A.R., Piant, A.: A review of the development of three generations of small diameter silicon carbide fibres, J. Mater. Sci., 41, 823 – 839, (2006).
24 Bansal, N.P., Handbook of ceramic composites, Springer, (2006)
25 Ionescu, E., Riedel, R.: Polymer processing of ceramics, in ceramics and composites processing methods (eds N. P. Bansal and A. R. Boccaccini), John Wiley & Sons, Inc., Hoboken, NJ, USA (2012). doi: 10.1002/9781118176665.ch7.
26 Padron, S., Fuentes, A., Caruntu, D., Lozano, K.: Experimental study of nanofiber production through forcespinning. J. Appl. Phys., 113, 2, (2013).
27 Taghavi, S.M., Larson, R.G. (2014). Erratum: Regularized thin-fiber model for nanofiber formation by centrifugal spinning, Phys. Rev. E, 89, (2014)
Copyright
Göller Verlag GmbH