Articles
All articles | Recent articles
Facile Synthesis and Characterization of MnxZn1-xFe2O4/Activated Carbon Composites for Biomedical Applications
J.C. Ríos-Hurtado1, A.C. Martínez-Valdés1, J.R. Rangel-Méndez2, J.C. Ballesteros-Pacheco1, E.M. Múzquiz-Ramos1
1 Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza y José Cárdenas Valdés, C.P. 25280, Saltillo, México.
2 División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa de San José 2055, Col. Lomas 4ª Sección, C.P. 78216, San Luis Potosí. México.
received Febuary 24, 2016, received in revised form April 20, 2016, accepted May 15, 2016
Vol. 7, No. 3, Pages 289-294 DOI: 10.4416/JCST2016-00020
Abstract
The synthesis of MnxZn1-xFe2O4 ferrites (x = 0.4, 0.5 and 0.6) by means of the co-precipitation method is reported. Furthermore, a composite of Mn0.4Zn0.6Fe2O4/activated carbon was prepared with the mechanosynthesis method. The magnetic, structural, morphological and chemical properties were analyzed by means of VSM, XRD, SEM, FTIR and Boehm's titration. The heating capacity was evaluated under a magnetic field using solid-state induction heating equipment, in addition a hemolysis test was performed using human red blood cells. With regard to the synthesis of manganese-zinc ferrite, the results indicated that Mn0.4Zn0.6Fe2O4 ferrite showed higher saturation magnetization (64.48 emu/g) than the other ferrite obtained, with superparamagnetic behavior. The Mn0.4Zn0.6Fe2O4/activated carbon composite was able to heat in concentrations of 10 mg/ml under a magnetic field (10.2 kAm-1 and frequency 200 kHz), increasing the temperature up to 42.5 °C. The hemolysis test indicated that the presence of activated carbon reduces the hemolytic behavior of the ferrite. Thanks to its heating capacity and non-hemolytic activity, the Mn0.4Zn0.6Fe2O4/activated carbon composite is a potential candidate for use in biomedical applications.
Download Full Article (PDF)
Keywords
Mn-Zn ferrite, superparamagnetic, activated carbon, composite, hemolysis.
References
1 Karimi, Z., Karimi, L., Shokrollahi, H.: Nano-magnetic particles used in biomedicine: Core and coating materials. Mater. Sci. Eng. C, 33, 2465 – 2475, (2013).
2 Dumitrescu, A.M., Slatineanu, T., Poiata, A., Iordan, A.R.: Colloids and surfaces A: Physicochemical and engineering aspects advanced composite materials based on hydrogels and ferrites for potential biomedical applications. Colloids Surface A, 455, 185 – 194, (2014).
3 Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug Deliv. Rev., 63, 24 – 46, (2011).
4 Harris, V.G. et al.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater., 321, 2035 – 2047, (2009).
5 Iftikhar, A. et al.: Synthesis of super paramagnetic particles of Mn1-xMgxFe2O4 ferrites for hyperthermia applications, J. Alloys Compd., 601, 116 – 119, (2014).
6 Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W., Zeng, D.C.Ã.: Effects of cobalt doping on the microstructure and magnetic properties of Mn – Zn ferrites prepared by the co-precipitation method, Phys. B, 404, 2327 – 2331, (2009).
7 Veena Gopalan, E. et al.: Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites, J. Magn. Magn. Mater., 321, 1092 – 1099, (2009).
8 Elahi, I., Zahira, R., Mehmood, K., Jamil, A., Amin, N.: Co-precipitation synthesis, physical and magnetic properties of manganese ferrite powder, African J. Pure Appl. Chem., 6, 1 – 5, (2012).
9 Chen, S., Xia, J., Dai, J.: Effects of heating processing on microstructure and magnetic properties of mn-zn ferrites prepared via chemical co-precipitation, J. Wuhan Univ. Technol. Sci. Ed., 30, 684 – 688, (2015).
10 Zahraei, M. et al.: Synthesis and characterization of chitosan coated manganese zinc ferrite nanoparticles as MRI contrast agents, J. Nanostructures, 5, 77 – 86, (2015).
11 Yang, N., Zhu, S., Zhang, D., Xu, S.: Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Mater. Lett., 62, 645 – 647, (2008).
12 Zhang, B. B. et al.: Magnetic properties and adsorptive performance of manganese – zinc ferrites/activated carbon nanocomposites. J. Solid State Chem., 221, 302 – 305, (2015).
13 Fabris, D. et al.: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon, 40, 2177 – 2183, (2002).
14 Ramanujan, R.V., Purushotham, S., Chia, M.H.: Processing and characterization of activated carbon coated magnetic particles for biomedical applications, Mater. Sci. Eng. C, 27, 659 – 664, (2007).
15 Rybolt, T.R., Burrell, D.E., Shults, J.M., Kelley, A.K.: A biomedical application of activated carbon adsorption: an experiment using acetaminophen and n-acetylcysteine, J. Chem. Educ., 65, 1009, (1988).
16 Saha, D., Warren, K.E., Naskar, A.K.: Soft-templated mesoporous carbons as potential materials for oral drug delivery, Carbon, 71, 47 – 57, (2014).
17 Hung, M.-C. et al.: Evaluation of active carbon fibers used in cell biocompatibility and rat cystitis treatment, Carbon, 68, 628 – 637, (2014).
18 Chu, M. et al.: Laser light triggered-activated carbon nanosystem for cancer therapy, Biomaterials, 34, 1820 – 1832, (2013).
19 Múzquiz-Ramos, E.M., Guerrero-Chávez, V., Macías Martínez, B.I., López-Badillo, C.M.: Synthesis and characterization of maghemite nanoparticles for hyperthermia applications, Ceram. Int., 41, 397 – 402, (2015).
20 Franckena, M. et al.: Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia, Eur. J. Cancer, 45, 1969 – 78, (2009).
21 Pradhan, P., Giri, J., Banerjee, R.: Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer, J. Magn. Magn. Mater., 311, 208 – 215, (2007).
22 Boehm, H.P.: Some aspects of the surface chemistry, Carbon, 32, 759 – 769, (1994).
23 Ríos-Hurtado, J.C., Múzquiz-Ramos, E.M., Zugasti-Cruz, A., Cortés-Hernández, D.A.: Mechanosynthesis as a simple method to obtain a magnetic composite (Activated Carbon/Fe3O4) for hyperthermia treatment, J. Biomater. Nanobiotechnol., 7, 19 – 28, (2016).
24 Caltun, O. et al.: The influence of mn doping level on magnetostriction coefficient of cobalt ferrite, J. Magn. Magn. Mater., 316, e618 – e620, (2007).
25 Atif, M., Sato Turtelli, R., Grössinger, R., Siddique, M., Nadeem, M.: Effect of mn substitution on the cation distribution and temperature dependence of magnetic anisotropy constant in Co1-xMnxFe2O4 (0.0≤x≤0.4) ferrites, Ceram. Int., 40, 471 – 478, (2014).
26 Figuerola, A., Di Corato, R., Manna, L., Pellegrino, T.: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications, Pharmacol. Res., 62, 126 – 43, (2010).
27 Pankhurst, Q., Connolly, J.: Applications of magnetic nanoparticles in biomedicine, J. Phys. D., 36, 167 – 181, (2003).
28 ASTMF-756, Standard practice for assessment of hemolytic properties of materials, Annual Book of ASTM Standards. Committee F04 Medical and Surgical Materials and Devices, Subcommittee F04.16 Biocompatibility Test Methods. Annual Book of ASTM Standards. (2009).
Copyright
Göller Verlag GmbH