Articles
All articles | Recent articles
Sintering Behaviour of Fine Barium Titanate (BaTiO3) Powders Consolidated with the Pressure Filtration Method
Ł. Zych, A. Wajler, A. Kwapiszewska
AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30 – 059 Krakow, Poland
received 24. Oktober 2015, received in revised form 5. Mai 2016, accepted 22. Mai 2016
Vol. 7, No. 3, Pages 277-288 DOI: 10.4416/JCST2016-00016
Abstract
Main aim of the study was the determination of the sintering behaviour of fine barium titanate powders consolidated with the pressure filtration method. Three commercial powders with primary particle size of 50, 100 and 200 nm were used. Relationships between particle size, characteristics of the consolidated bodies and their sintering behaviour were investigated. The far-reaching goal of the study was the production of transparent or translucent barium titanate, a material that is part of a group of transparent ferroelectric ceramics applied in electro-optical devices. Aqueous and propanol suspensions of the powders were prepared and pressure-filtered at 10 MPa. Materials consolidated from the aqueous suspensions showed more advantageous pore size distributions, i.e. smaller modal pore diameter and lower total pore volume than those formed from the propanol suspensions and materials formed by means of cold isostatic pressing of the powders at 120 MPa. This was attributed to the smaller size of particles present in the aqueous suspensions compared with those in the propanol suspensions. Onset of the sintering process observed in dilatometric measurements was at 900 – 950 °C. The highest densities of approx. 98 % were achieved with sintering at 1300 °C or 1350 °C in air. Density exceeding 99 % was achieved by sintering with the SPS method at 1100 °C. Transmittance of the sample reached 55 % in the near-IR region.
Download Full Article (PDF)
Keywords
Barium titanate, nanopowder, pressure filtration, sintering, transparent ferroelectric ceramics
References
1 Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc., 82, 797 – 818, (1999).
2 Levinson, L.M.: Electronic Ceramics, Properties, Devices, and Applications, Marcel Dekker, New York, 1988.
3 Haertling, G.H., Land, C.E.: Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications, J. Am. Ceram. Soc., 54, 1 – 11, (1971).
4 Wu, Y.J., Wang, N., Wu, S.Y, Chen, X.M.: Transparent barium strontium titanate ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc., 94, 1343 – 1345, (2011).
5 Li, F., Kwok, K-W.: K0.5Na0.5NbO3-based lead-free transparent electro-optic ceramics prepared by pressureless sintering, J. Am. Ceram. Soc., 96, 3557 – 3562, (2013).
6 Li, F., Kwok, K-W.: Fabrication of transparent electro-optic (K0.5Na0.5)1-xLixNb1-xBixO3 lead free ceramics, J. Eur. Ceram. Soc., 33, 123 – 130, (2013).
7 Shimooka, H., Kohiki, S., Kobayashi, T., Kuwabara, M.: Preparation of translucent barium titanate ceramics from sol-gel-derived transparent monolithic gels. J. Mater. Chem., 10, 1511 – 1512, (2000).
8 Liu, J., Shen, Z., Yao, W., Zhao, Y., Mukherjee, A.A.: Visible and infrared transparency in lead-free bulk BaTiO3 and SrTiO3 nanoceramics, Nanotechnology, 21, 075706, (2010).
9 Groza, J.R.: Nanocrystalline powder consolidation methods, in: Nanostructured materials. Processing, properties, and potential applications. William Andrew Publishing/Noyes New York, 2002.
10 Hirata, Y., Nakamura, M., Miyamoto, M., Tanaka, Y., Wang, X.H.: Colloidal condensation of ceramic nanoparticles by pressure filtration, J. Am. Ceram. Soc., 89, 1883 – 1889, (2006).
11 Zych, Ł., Haberko, K.: Filter pressing and sintering of a zirconia nanopowder. J. Eur. Ceram. Soc., 26, 373 – 378, (2006).
12 Bergstrom, L., Shinozaki, K., Tomiyama, H., Mizutani, N.: Colloidal processing of a very fine BaTiO3 powder – effect of particle interactions on the suspension properties, consolidation, and sintering behavior, J. Am. Ceram. Soc., 80, 291 – 300, (1997).
13 Gomez-Yanez, C., Balmori-Ramirez, H., Martinez, F.: Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant, Ceram. Int., 26, 609 – 616, (2000).
14 Shen, Z-G., Chen, J-F., Zou, H-K., Yun, J.: Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate, J. Colloid. Interf. Sci., 275, 158 – 164, (2004).
15 Song, Y-L., Liu, X-L., Zhang, J-Q., Zou, X-Y., Chen, J-F.: Rheological properties of nanosized barium titanate prepared by HGRP for aqueous tape casting, Powder Technol., 155, 26 – 32, (2005).
16 Polotai, A., Breece, K., Dickey, E., Randall, C., Ragulya, A.: A novel approach to sintering nanocrystalline barium titanate ceramics, J. Am. Ceram. Soc., 88, 3008 – 3012, (2005).
17 Vinothini, V., Singh, P., Balasubramanian, M.: Optimization of barium titanate nanopowder slip for tape casting, J. Mater. Sci., 41, 7082 – 7087, (2006).
18 Santacruz, I., Nieto, M.I., Binner, J., Moreno, R.: Wet forming of concentrated nano-BaTiO3 suspensions, J. Eur. Ceram. Soc., 29, 881 – 886, (2009).
19 Santacruz, I., Binner, J., Nieto, M.I., Moreno, R.: Dispersion and rheology of aqueous suspensions of nanosized BaTiO3, Int. J. Appl. Ceram. Technol., 7, E135 – 143, (2010).
20 Ciofani, G., Danti, S., Moscato, S., Albertazzi, L., D'Alessandro, D., Dinucci, D., et al.: Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine, Colloid. Surface-B, 76, 535 – 543, (2010).
21 Nikumbh, A.K., Adhyapak, P.V.: Influence of preparation route and slip casting conditions on titania and barium titanate ceramics, Particuology, 10, 371 – 383, (2012).
22 Ferreira, J.M.F., Olhero, S.M., Kaushal, A.: Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate? J. Eur. Ceram. Soc., 22, 2509 – 2517, (2013).
23 Jean, J-H., Wang, H-R.: Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid), J. Am. Ceram. Soc., 81, 1589 – 1599, (1998).
24 Blanco-Lopez, M.C., Rand, B., Riley, F.L.: The properties of aqueous phase suspensions of barium titanate, J. Eur. Ceram. Soc., 17, 281 – 287, (1997).
25 Blanco-Lopez, M.C., Fourlaris, G., Riley, F.L.: Interaction of barium titanate powders with an aqueous suspending medium, J. Eur. Ceram. Soc., 18, 2183 – 2192, (1998).
26 Boschini, F., Rulmont, A., Cloots, R., Moreno, R.: Colloidal stability of aqueous suspensions of barium zirconate, J. Eur. Ceram. Soc., 25, 3195 – 3201, (2005).
27 Krell, A., Blank, P., Ma, H., Hutzler, T., Nebelung, M.: Processing of high-density submicrometer Al2O3 for new applications, J. Am. Ceram. Soc., 86, 546 – 553, (2003).
28 O, Y.T., Koo, J.B., Hong, K.J., Park, J.S., Shin, D.C.: Effect of grain size on transmittance and mechanical strength of sintered alumina, Mat. Sci. Eng. A-Struct., 374, 191 – 195, (2004).
29 Vallar, S., Houivet, D., El Fallah, J., Kervadec, D., Haussonne, J-M.: Oxide slurries stability and powder dispersion: Optimization with zeta potential and rheological measurements. J. Eur. Ceram. Soc., 19, 1017 – 1021, (1999).
30 Matsuo, Y., Sasaki, H., Exaggerated grain growth in liquid-phase sintering of BaTiO3, J. Am. Ceram. Soc., 54, 471, (1971).
31 Hennings, D.F.K., Janssen, R., Reynen, P.J.L.: Control of liquid-phase-enhanced discontinuous grain growth in barium titanate, J. Am. Ceram. Soc., 70, 23 – 27, (1987).
32 Pu, Y., Yang, W., Chen, S.: Influence of rare earths on electric properties and microstructure of barium titanate ceramics, J. Rare. Earth, 25, 154 – 157, (2007).
33 Lee, J.K., Hong, K.S.: Revisit to the origin of grain growth anomaly in yttria-doped barium titanate, J. Am. Ceram. Soc., 84, 1745 – 1749, (2001).
34 Fisher, J.G., Lee, B.K., Brancquart, A., Choi, S.Y., et al.: Effect of Al2O3 dopant on abnormal grain growth in BaTiO3, J. Eur. Ceram. Soc., 25, 2033 – 2036, (2005).
35 Yoo, Y.S., Kim, H., Kim, D.Y.: Effect of SiO2 and TiO2 addition on the exaggerated grain growth of BaTiO3, J. Eur. Ceram. Soc., 17, 805 – 811, (1997).
Copyright
Göller Verlag GmbH