Articles
All articles | Recent articles
Biocompatibility of Hydroxyapatite-Alumina and Hydroxyapatite-Zirconia Composites including Commercial Inert Glass (CIG) as a Ternary Component
B. Bulut1, Z.E. Erkmen2, E.S. Kayali1
1 Metallurgical and Materials Engineering Dept., Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
2 Metallurgical and Materials Engineering Dept., Faculty of Engineering, Marmara University, Istanbul, Turkey
received February 1, 2016, received in revised form April 19, 2016, accepted May 27, 2016
Vol. 7, No. 3, Pages 263-276 DOI: 10.4416/JCST2016-00011
Abstract
Hydroxyapatite (HA), chemical formula Ca10(PO4)6(OH)2, is a very popular bioceramic for orthopedic and dental applications. Although HA has excellent biocompatibility, its inferior mechanical properties make it unsuitable for load-bearing implant applications. Therefore, HA should be strengthened by a secondary phase to produce a composite that possesses robust mechanical properties. The aim of this study was to compare the microstructural and mechanical properties and biocompatibility of HA-Al2O3 and HA-ZrO2 composites with the addition of 5 and 10 wt% commercial inert glass (CIG) independently and to determine from the studied composites the one with the most suitable composition for biomedical applications. The powders were pressed and then, the pellets were sintered between 1000 – 1300 °C for four hours. The thermodynamic analyses of the samples were performed by means of DTA followed by the thermodynamic analysis program FactSage. Microstructural characterizations were carried out using SEM + EDS and XRD, while hardness and compression tests were performed to measure the mechanical properties. The results showed that the compressive strength and the microhardness of HA-Al2O3 composites increased with rising CIG content and increasing sintering temperature. On the other hand, for HA-ZrO2 composites, increasing CIG content caused an elevation in hardness and a decrease in compressive strength values at 1300 °C. The biocompatibility tests (in vitro and in vivo) were performed on those composites that possessed the highest physical and mechanical properties. In conclusion, the optimum CIG content was determined to improve the mechanical properties and biocompatibility of the composites. The mechanical properties and biocompatibility of HA-Al2O3 composites have been found to be lower than those of HA-ZrO2 composites. In this study, the ideal composite was selected as HA-ZrO2- 5 wt% (HZC5) sintered at 1200 °C.
Download Full Article (PDF)
Keywords
Hydroxyapatite, ceramics, composites, microstructure, mechanical properties, biocompatibility
References
1 Engin, N.O., Tas, A.C.: Manufacture of macroporous calcium hydroxyapatite bioceramics, J. Eur. Ceram. Soc., 19, 2569 – 2572, (1999). Doi:10.1016/S0955 – 2219(99)00131 – 4
2 Kwon, S.H., Jun, Y.K., Hong, S.H., Kim, H.E.: Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders, J. Eur. Ceram. Soc., 23, 1039 – 1045, (2003). Doi:10.1016/S0955 – 2219(02)00263 – 7
3 Rabiee, S.M., Moztarzadeh, F., Solati-Hashjin, M.: Synthesis and characterization of hydroxyapatite cement, J. Mol. Struct.,969,: 172 175, (2010).Doi:10.1016/j.molstruc.2010.01.068
4 Hannora, A.E.: Preparation and characterization of Hydroxyapatite/Alumina nanocomposites by high-energy vibratory ball milling, J. Ceram. Sci. Tech., 5, 293 298, (2014).Doi: 10.4416/JCST2014 – 00019
5 Descampsa, M, Boilet, L, Moreaua, G., Tricoteaux, A., Lud, J., Leriche, A., Lardot, V., Cambier, F.: Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing, J. Eur. Ceram. Soc.,33, 1263 1270, (2013).Doi:10.1016/j.jeurceramsoc.2012.12.020
6 Brown, O., McAfee, M., Clarke, S., Buchanan, F.: Sintering of biphasic calcium phosphates, J. Mater. Sci. – Mater. M. 21, 2271 – 2279, (2010). Doi: 10.1007/s10856 – 010 – 4032 – 6
7 Kim, S.J., Bang, H.G., Song, J.H., Park, S.Y.: Effect of fluoride additive on the mechanical properties of Hydroxyapatite/Alumina composites, Ceram. Int., 35, 1647 – 1650, (2009). Doi:10.1016/j.ceramint.2008.07.016
8 Goller, G., Demirkiran, H, Oktar, F.N., Demirkesen, E.: Processing and characterization of bioglass reinforced hydroxyapatite composites,Ceram. Int., 29, 721 – 724, (2003). Doi:10.1016/S0272 – 8842(02)00223 – 7
9 Demirkol, N., Oktar, F.N., Kayali, E.S.: Influence of niobium oxide on the mechanical properties of hydroxyapatite, Key Eng. Mat., 529 – 530, 29 – 33, (2013).Doi:10.4028/www.scientific.net/KEM.529 – 530.29
10 Rao, R.R., Kannan, T.S.: Synthesis and sintering of hydroxyapatite-zirconia composites, Mater. Sci. Eng. 20, 187 – 193 (2002) Doi:10.1016/S0928 – 4931(02)00031 – 0
11 Mobasherpour, I., Hashjin, M.S., Toosi, S.S.R., Kamachali, R.D.: Effect of the addition ZrO2-Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness, Ceram. Int. 35; 1569 – 1574 (2009).Doi:10.1016/j.ceramint.2008.08.017
12 Ayed; F:B:, Bouaziz; J.: Sintering of tricalcium phosphate-fluorapatite composites by addition of alumina, Ceram. Int., 34, 1885 – 1892, (2008). Doi:10.1016/j.ceramint.2007.07.017
13 Samodurovaa, A., Kocjana, A., Swainb, M.V., Kosmaca, T.: The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics, Acta Biomater.; 11, 477 – 487, (2015). Doi:10.1016/j.actbio.2014.09.009
14 Hisbergues, M., Vendeville, S., Vendeville, P.: Zirconia: established facts and perspective for a biomaterial in dental, J. Biomed. Mater. Res. B., 88, 519 – 529, (2009).Doi: 10.1002/jbm.b.31147
15 Daou, E.E.: The zirconia Ceramic: Strengths and weaknesses, Open Dent. J., 8, 33 – 42, (2014).Doi: 10.2174/1874210601408010033
16 Evis, Z.: Reactions in hydroxylapatite-zirconia composites, Ceram. Int. 33, 987 – 991, (2007).Doi:10.1016/j.ceramint.2006.02.012
17 Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., Benhayoune, H.: A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst, Mater. Sci. Eng., 47, 407 – 412, (2015). Doi:10.1016/j.msec.2014.11.045
18 Verne, E., Ferraris, S., Cassinelli, C., Boccaccini, A.R.: Surface functionalization of bioglass with alkaline phosphatase, Surf. Coat. Tech., 264, 132 – 139, (2015).Doi:10.1016/j.surfcoat.2015.01.001
19 Chen, Q.Z., Thouas, G.A.: Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds, Acta Biomater., 7, 3616 – 3626, (2011). Doi:10.1016/j.actbio.2011.06.005
20 Yelten, A., Yilmaz, S., Oktar, F.N.: Comparison of microstructures of bovine hydroxyapatite and sol-gel derived porous alumina-hydroxyapatite biocomposite powders, Key Eng. Mater., 493 – 494, 551 – 555, (2012).Doi: 10.4028/www.scientific.net/KEM.493 – 494.551
21 Pujiyanto, E., Tontowi, A.E., Wildan, M.W., Siswomihardjo, W.: Porous hydroxyapatite-zirconia composites prepared by powder deposition and pressureless sintering, Adv. Mater. Res., ; 445, 463 – 468, (2012).Doi: 10.4028/www.scientific.net/AMR.445.463
22 Salman, S., Oktar, F.N., Gunduz, O., Agathopoulos, S., Ovecoglu, M.L., Kayali, E.S.: Sintering effect on mechanical properties of composites made of bovine hydroxyapatite (BHA) and commercial inert glass (CIG), Key Eng. Mater., 330 – 332, 189 – 192, (2007).Doi: 10.4028/www.scientific.net/KEM.330 – 332.189
23 Demirkol. N., Oktar, F.N., Kayali, E.S.: Influence of commercial inert glass addition on the mechanical properties of commercial synthetic hydroxyapatite, Acta Phys. Pol. A., 123, 427 – 429, (2013). Doi: 10.12693/APhysPolA.123.427
24 Pelton, A.D., Thompson, W.T., Bale, C.W., Eriksson, G.: FACT thermochemical database for calculations in materials chemistry at high temperatures, Materials Chemistry at High Temperatures 1, 231 – 250, (1990).Doi: 10.1007/978 – 1-4612 – 0481 – 7_18
25 Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 27, 2907 – 2915, (2006). Doi:10.1016/j.biomaterials.2006.01.017
26 Kokubo, T.: Bioactive glass Ceramics: properties and applications, Biomaterials, 12, 155 – 163 (1990).Doi:10.1016/0142 – 9612(91)90194-F
27 Maniatopoulos, C., Sodek, J., Melcher, A.H.: Bone formation In Vitro by stromal cells obtained from bone marrow of young adult rat, Cell Tissue Res., 254, 317 – 330, (1988). Doi:10.1007/BF00225804
Copyright
Göller Verlag GmbH