• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Mechanical Characterisation of Carbon-Bonded Magnesia at Temperatures up to 1400 °C

J. Solarek1, C.G. Aneziris2, H. Biermann1

1 Institute of Materials Engineering, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
2 Institute of Ceramic, Glass and Construction Materials, TU Bergakademie Freiberg, D-09599 Freiberg, Germany

received Febuary 12, 2016, received in revised form April 10, 2016, accepted April 15, 2016

Vol. 7, No. 2, Pages 193-202   DOI: 10.4416/JCST2016-00017

Abstract

The mechanical properties of carbon-bonded magnesia were investigated from room temperature to 1400 °C in tension, compression and bending. For this purpose, quasi-static, static and cyclic tests were conducted on two testing machines, equipped with inert atmosphere chambers and inductive heating devices. Characterisation of the microstructure was performed with scanning electron microscopy (SEM) and optical microscopy (OM). Porosity and density were measured with the Archimedes principle and pycnometry. From the creep tests, activation energies and Norton exponents for high-temperature creep deformation were determined. Additionally, scatter was addressed. The cyclic tests showed a high influence of stress amplitude on fatigue lifetime, whereas degradation of specimens only took place in tension.

Download Full Article (PDF)

Keywords

Refractories, high temperature carbon-bonded magnesia, mechanical properties, creep

References

1 Ewais, E.M.M.: Carbon based refractories, J. Ceram. Soc. Jpn., 112, 517 – 532, (2004).

2 Jenkins, G.M: Analysis of the stress-strain relationships in reactor grade graphite, Br. J. Appl. Phys., 13, 30 – 32, (1962).

3 Seldin, E.J.: Stress-strain of polycrystalline graphites in tension and compression at room temperature, Carbon, 4, 177 – 191, (1966).

4 Fitchett, A.M., Wilshire, B.: Mechanical properties of carbon-bearing magnesia: parts I, II and III, Trans. J. Br. Ceram. Soc., 83, 54 – 76, (1984).

5 Allaire, C., Daillaire, S., Rigaud, M.: Creep behaviour of natural dolomite carbon-bonded magnesite bricks, J. Can. Ceram. Soc., 56, 45 – 48, (1987).

6 Ioka, I., Yoda, S., Konishi, T.: Acoustic emission for polycrystalline graphite under compressive loading, Carbon, 28, 489 – 495, (1990).

7 Franklin, S.A., Tucker, B.J.S.: Hot strength and thermal-shock resistance of magnesia-carbon refractories, Br. Ceram. Trans., 94, 151 – 156, (1995).

8 Robin, J.M., Berthaud, Y., Schmitt, N., Poirier, J., Themines, D.: Thermomechanical behaviour of magnesia-carbon refractories, Br. Ceram. Trans., 97, 1 – 11, (1998).

9 Schmitt, N., Berthaud, Y., Poirier, J.: Tensile behaviour of magnesia carbon refractories, J. Eur. Ceram. Soc., 20, 2239 – 2248, (2000).

10 Ouedraogo, E., Prompt, N.: High-temperature mechanical characterisation of an alumina refractory concrete for blast furnace main trough. J. Eur. Ceram. Soc., 28, 2867 – 2875, (2008).

11 Prompt, N., Ouedraogo, E.: High temperature mechanical characterisation of an alumina refractory concrete for blast furnace main trough, J. Eur. Ceram. Soc., 28, 2859 – 2865, (2008).

12 Briche, G., Tessier-Doyen, N., Huger, M., Chotard, T.: Investigation of the damage behaviour of refractory model materials at high temperature by combined pulse echography and acoustic emission techniques, J. Eur. Ceram. Soc., 28, 2835 – 2843, (2008).

13 Kakroudi, M.G., Yeugo-Fogaing, E., Huger, M., Gault, C., Chotard, T.: Influence of the thermal history on the mechanical properties of two alumina based castables, J. Eur. Ceram. Soc., 29, 3197 – 3204, (2009).

14 Werner, J., Aneziris, C.G., Dudczig, S.: Young's modulus of elasticity of carbon-bonded alumina materials up to 1450 °C, J. Am. Ceram. Soc., 96, 2958 – 2965, (2013).

15 Werner, J., Aneziris, C.G., Schafföner, S.: Influence of porosity on Young's modulus of carbon-bonded alumina from room temperature up to 1450 °C, Ceram. Int., 40, 14439 – 14445, (2014).

16 Solarek, J., Bachmann, C., Klemm, Y., Aneziris, C.G., Biermann, H.: Mechanical Characterisation of Carbon Bonded Alumina (Al2O3-C) at temperatures up to 1500 °C. In: Proceedings of the Unified International Technical Conference of Refractories. Vienna, Austria, September 15.-18. 2015

17 Solarek, J., Bachmann, C., Klemm, Y., Aneziris, C.G., Biermann, H.: High-temperature compression deformation behaviour of fine-grained carbon-bonded alumina, J. Am. Ceram. Soc., in press, (2016)

18 Solarek, J., Adlmaier, F.X., Aneziris, C.G., Biermann, H.: High Temperature Behaviour of Carbon Bonded Magnesia (MgO-C) at Temperatures up to 1500 °C. In: Proceedings of the Unified International Technical Conference of Refractories. Vienna, Austria, September 15.-18. 2015

19 Hino, Y., Yoshida, K., Kiyota, Y., Kuwayama, M.: Fracture mechanics investigation of MgO-C bricks for steelmaking by bending and fatigue failure tests along with x-ray CT scan observation, ISIJ Int., 53, 1392 – 1400, (2013).

20 Andreev, K., Boursin, M., Laurent, A., Zinngrebe, E., Put, P., Sinnema, S.: Compressive fatigue behaviour of refractories with carbonaceous binders, J. Eur. Ceram. Soc., 34, 523 – 531, (2014).

21 Hampel, M.: Contribution for the Characterization of Carbon Bonded Magnesia Refractories, in German, Dissertation at TU Bergakademie Freiberg, (2011).

22 Norm DIN EN 993: Methods of testing dense shaped refractory products – Part 8 and 9, (1997)

23 Solarek, J., Aneziris, C.G., Biermann, H.: Mechanical properties of carbon-bonded magnesia between room temperature and 1300 °C, in German, in DKG-Handbuch Technische Keramische Werkstoffe - Chap. 6.2.3.2, HvB Verlag, Ellerau, 2015

24 Funk, J.E., Dinger, D.R.: Derivation of the Dinger-Funk Particle Size Distribution Equation. In: Predictive Process Control of Crowded Particulate Suspensions, Springer US, Boston, MA, 1994.

25 Terzic, A., Pavlovic, Lj., Milutinovic-Nikolic, A.: Influence of the phase composition of refractory materials on creep, Sci. Sinter., 38, 255 – 263, (2006).

26 Rathner, R., Knauder, J.P., Schweiger, H.F.: Design aspects and thermomechanical behaviour of converter linings, in german, Radex-Rundschau, 45, 327 – 342, (1990).

27 Schacht, C.A.: Thermomechanical Behaviour of Refractories. Key Eng. Mat., 88, 193 – 218, (1993).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH