• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Microscale-Motivated Continuum Damage Simulations of Brittle Ceramics under Thermomechanical Loading

J. Gundlach, D. Henneberg, J. Scheel, A. Ricoeur

University of Kassel, Institute of Mechanics, Chair of Engineering Mechanics/Continuum Mechanics, Mönchebergstraße 7, D-34119 Kassel, Germany

received February 1, 2016, received in revised form March 20, 2016, accepted May 2, 2016

Vol. 7, No. 2, Pages 145-154   DOI: 10.4416/JCST2016-00012

Abstract

Two approaches towards modeling damage in a brittle material caused by thermomechanical loading are presented. Both rely on microcrack growth, in the first case in a homogeneous matrix, in the second one at grain boundaries. Two-scale simulations e.g. of thermal shocks applied to single-phase or layered structures are performed in connection with the finite element method. Damage and crack patterns are predicted just as quantities like residual strength or critical temperature jumps.

Download Full Article (PDF)

Keywords

Thermal shock, damage simulations, multiscale models, effective material properties

References

1 Lube, T., Baierl, R.G.: Sub-critical crack growth in alumina – a comparison of different measurement and evaluation methods, Berg- und Hüttenmännische Monatshefte, 156, 450 – 456, (2011).

2 Supancic, P.H., Schöpf, H.M.: Exact implementation of subcritical crack growth into a weibullian strength distribution under constant stress rate conditions, J.Eur.Ceram.Soc., 32, 4031 – 4040, (2012).

3 Henneberg, D., Ricoeur, A., Judt, P.: Multiscale modeling for the simulation of damage processes at refractory materials under thermal shock, Comput. Mater. Sci., 70, 187 – 195, (2013).

4 Henneberg, D., Ricoeur, A.: Numerical two-scale simulations of damage evolution at refractory materials, J. Ceram. Sci. Tech., 5, [2], 83 – 93, (2014).

5 Kolari, K.: Damage mechanics model for brittle failure of transversely isotropic solids. VTT Technical Research Centre of Finland, 2007.

6 Lemaitre, J., Desmorat, R.: Engineering damage mechanics. Springer-Verlag, Berlin Heidelberg, 2005.

7 Ricoeur, A., Kuna, M.: The thermoelectromechanical J-integral and the thermal permeability of cracks, Key Eng. Mater., 385 – 387, 569 – 572, (2008).

8 Gross, D., Seelig, T.: Fracture mechanics. Springer-Verlag, Berlin Heidelberg, 2011.

9 Nemat-Nasser, S., Hori, M.: Micromechanics: Overall properties of heterogeneous materials. 2nd edition. Elsevier, Amsterdam, 1999.

10 Kuna, M.: Numerical stress analysis of cracks, in German, Vieweg+Teubner, Wiesbaden, 2008.

11 Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, 11, 357 – 372, (1963).

12 Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Advanced constitutive modeling of heterogeneous materials with gradient-enhanced computational homogenization scheme, Int. J. Numer. Meth. Engng., 54, 1235 – 1260, (2002).

13 Gitman, I.M.: Representative volumes and multi-scale modeling of quasi-brittle materials, Ph.D-Thesis, Delft University of Technology, Netherlands, 2006.

14 Miehe, C., Koch, A.: Computational micro-to-macro transitions of discretized microstructures undergoing small stress, Archive Appl. Mech., 72, 300 – 317, (2002).

15 Loehnert, S., Belytschko, T.: A multiscale projection method for macro/microcrack simulations, Int. J. Numer. Meth. Engng, 71, 1466 – 1482, (2007).

16 Oezdemir, I., Brekelmans, M.,G.,D., Geers, M.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comp. Methods Appl. Mech. Engrg., 198, 602 – 613, (2008).

17 Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends & challenges, J. Comp. Appl. Math., 234, [7], 2175 – 2182, (2010).

18 Wachtman, J.B., Cannon, W.R., Matthewson, M.J.: Mechanical properties of ceramics, 2nd edition. John Wiley & Sons, Inc., New York, 2009.

19 Barenblatt, B.: The formation of equilibrium cracks during brittle fracture, J. Appl. Math. and Mech., 23, 622 – 636, (1959).

20 Dugdale, D.S.: Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100 – 104, (1960).

21 Needleman, A.: A continuum model for voids nucleation by inclusion debonding, J. Appl. Mech., 54, 525 – 531, (1987).

22 Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concentrate by means of fracture mechanics and finite elements, Cement Concrete Res., 6, 773 – 782, (1976).

23 Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379 – 386, (1968).

24 Griffith, A.A.: The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc., 163 – 197, (1920).

25 Judt, P. O., Ricoeur, A., Linek, G.: Crack path prediction in rolled aluminum plates with fracture toughness orthotropy and experimental validation, Eng. Fract. Mech., 138, 33 – 48, (2015).

26 Pilipenko, D., Natanzon, Y., Emmerich, H.: Multiscale modeling of thermoshock in aluminium oxide ceramics, Refractories Worldforum, 4, [1], 169 – 174, (2012).

27 Thomser, C., Skiera, E., Buerger, A., Linke, J., Loewenhoff, T., Schmidt, A., Singheiser, L., Steinbrech, R.: Thermal shock testing of refractory materials using an electron beam materials test facility, Int. J. Appl. Ceram. Tec., 9, [6], 1098 – 1103, (2012).

28 Hasselman, D. P. H.: Thermal stress resistance parameters for brittle refractory ceramics. J. Am. Ceram. Soc., 49, [12], 1033 – 1037, (1970).

29 Homeny, J., Bradt, R.C.: Thermal shock of refractories. In: Thermal stresses in severe environments. Plenum Press, New York, 1980.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH