• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Prediction of Effective Thermal Conductivity of Refractory Materials at High Temperatures based on Synthetic Geometry Generation

C. Demuth1, J. Hubálková2, M.A.A. Mendes1,3, F. Ballani4, D. Trimis1,3, S. Ray1

1 Institute of Thermal Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 7, D-09596 Freiberg, Germany
2 Institute of Ceramic, Glass and Construction Materials, Technische Universität Bergakademie Freiberg, Agricolastraße 17, D-09596 Freiberg, Germany
3 Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 7, D-76131 Karlsruhe, Germany
4 Institute of Stochastics, Technische Universität , Prüferstraße 9, D-09596 Freiberg, Germany

received January 11, 2016, received in revised form March 21, 2016, accepted April 13, 2016

Vol. 7, No. 2, Pages 183-192   DOI: 10.4416/JCST2016-00006

Abstract

In the present article, the numerical prediction of the effective thermal conductivity (keff) of low-carbon refractory materials at high temperatures is investigated. The employed numerical methodology consists of computational geometry generation by a modified random sequential adsorption (RSA) algorithm and solution of a heat conduction problem in the generated material sample by the finite volume method (FVM). The probability distributions, employed for modelling the grain sizes, are reexamined. Several aspects are recognised as crucial for reasonable predictions of keff in the considered range from the room to the coking temperature. First, an appropriate estimate of the equivalent thermal conductivity krest of the unresolved fine-scaled material is required, which is obtained from the effective medium theory (EMT). Furthermore, modelling the thermal expansion of the coarse and medium grains, leading to the formation of air gaps between the grains and the continuous phase at lower temperature, is extremely important. The presence of these air gaps could be implemented in FVM. The numerical predictions of keff show reasonably good agreement with experimental data in the complete temperature range, only if this gap width is considered as a function of the operating temperature, along with krest and the temperature-dependent thermal conductivities of the constituents.

Download Full Article (PDF)

Keywords

Effective thermal conductivity, refractory materials, random sequential adsorption, finite volume method, thermal contact resistance

References

1 Roungos, V., Aneziris, C.G.: Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives, Ceram. Int., 38, 919 – 927, (2012).

2 Roungos, V., Aneziris, C.G., Berek, H.: Novel Al2O3-C refractories with less residual carbon due to nanoscaled additives for continuous steel casting applications, Adv. Eng. Mater., 14, 255 – 264, (2012).

3 Stein, V., Aneziris, C.G.: Low-carbon carbon-bonded alumina refractories for functional components in steel technology, J. Ceram. Sci. Tech., 5, 115 – 123, (2014).

4 Chesters, J.H.: Refractories for iron- and steelmaking. The Metals Society, London, 1974.

5 Ruan, G.Z., Li, N.: Carbon pickup of interstitial free steel from Al2O3-C refractories, Ironmak Steelmak, 31, 342 – 344, (2004).

6 Zhang, L., Thomas, B.G.: State of the art in evaluation and control of steel cleanliness, ISIJ Int., 43, 271 – 291, (2003).

7 Zehmisch, R., Al-Zoubi, A., Ray, S., Trimis, D., Ballani, F., van den Boogaart, K.G.: Numerical determination of effective thermal conductivity of refractory materials, Refractories Worldforum, 4, 181 – 186, (2012).

8 Zehmisch, R., Demuth, C., Al-Zoubi, A., Mendes, M.A.A., Ballani, F., Ray, S., Trimis, D.: Numerical prediction of effective thermal conductivity of refractory materials: methodology and sensitivity analysis, J. Ceram. Sci. Tech., 5, 145 – 153, (2014).

9 Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng., R, 63, 1 – 30, (2008).

10 Rosin, P., Rammler, E.: The laws governing the fineness of powdered coal, J. Inst. Fuel, 7, 29 – 36, (1933).

11 Rosin, P., Rammler, E., Sperling, K.: Grain size problems of coal dust and their significance for crushing, in German, Berichte der Technisch-Wirtschaftlichen Sachverständigen­ausschüsse des Reichskohlenrats, C 52, 25 pp., VDI-Verlag, Berlin, 1933.

12 Bennett, J.G.: Broken coal, J. Inst. Fuel, 10, 22 – 39, (1936).

13 Petrasch, J., Schrader, B., Wyss, P., Steinfeld, A.: Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics, J. Heat Transfer, 130, 032602 (10 pp.), (2008).

14 Coquard, R., Baillis, D.: Numerical investigation of conductive heat transfer in high-porosity foams, Acta Mater., 57, 5466 – 5479, (2009).

15 Mendes, M.A.A., Ray, S., Trimis, D.: A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures, Int. J. Heat Mass Transf., 66, 412 – 422, (2013).

16 Lee, W.E., Zhang, S., Karakus, M.: Refractories: controlled microstructure composites for extreme environments, J. Mater. Sci., 39, 6675 – 6685, (2004).

17 Werner, J., Aneziris, C.G., Dudczig, S.: Young's modulus of elasticity of carbon-bonded alumina materials up to 1450 °C, J. Am. Ceram. Soc., 96, 2958 – 2965, (2013).

18 Modest, M.F.: Radiative heat transfer. 3rd edition. Academic Press, New York, 2013.

19 Mendes, M.A.A., Talukdar, P., Ray, S., Trimis, D.: Detailed and simplified models for evaluation of effective thermal conductivity of open-cell porous foams at high temperatures in presence of thermal radiation, Int. J. Heat Mass Transf., 68, 612 – 624, (2014).

20 Mendes, M.A.A., Skibina, V., Talukdar, P., Wulf, R., Gross, U., Trimis, D., Ray, S.: Experimental validation of simplified conduction-radiation models for evaluation of effective thermal conductivity of open-cell metal foams at high temperatures, Int. J. Heat Mass Transf., 78, 112 – 120, (2014).

21 Mertke, A., Aneziris, C.G.: The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories, Ceram. Int., 41, 1541 – 1552, (2015).

22 Routschka, G. (Ed.): Pocket manual refractory materials: basics, structures, properties. 2nd edition. Vulkan-Verlag, Essen, 2004.

23 Fruhstorfer, J., Aneziris, C.G.: The influence of the coarse fraction on the porosity of refractory castables, J. Ceram. Sci. Tech., 5, 155 – 165, (2014).

24 Rahaman, M.N.: Ceramic processing. In: Kirk, R.E., Othmer, D.F. (Eds.): Kirk-Othmer encyclopedia of chemical technology, John Wiley & Sons, Inc., Hoboken, 1 – 98, 2014.

25 Reed, J.S.: Introduction to the principles of ceramic processing, John Wiley & Sons, Inc., New York, pp. 188 ff., 1988.

26 Stein, V.: Contribution to the characteristic improvement of carbon bonded doloma refractories by addition of functional ceramic materials, Ph.D. thesis, Technische Universität Bergakademie Freiberg, Freiberger Forschungshefte, A 905, (2011).

27 Schwieger, K.-H.: Refractory materials (in German). In: Becker, G.W., Braun, D., Woebcken, W. (Eds.): Kunststoffhandbuch (Plastics manual), Vol. 10 Duroplaste (Thermosetting plastics). Carl Hanser Verlag, München, 1096 – 1104, 1988.

28 Irie, S., Rappolt, J.: Phenolic resin for refractories. In: Pilato, L.: Phenolic Resins: A Century of Progress. Springer-Verlag, Berlin, chapter 19, 503 – 515, 2010.

29 Tomeczek, J., Suwak, R.: Thermal conductivity of carbon-containing refractories, Ceram. Int., 28, 601 – 607, (2002).

30 Weibull, W.: A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293 – 297, (1951).

31 Bernhardt, C.: Particle size analysis – classification and sedimentation methods. Powder Technology Series. Chapman & Hall, London, 1994.

32 Sommer, K.: 40 years of presentation particle size distributions – yet still incorrect?, Part. Part. Syst. Charact., 18, 22 – 25, (2001).

33 Stiess, M.: Mechanical process engineering – particle technology. 3rd, revised edition (in German). Springer, Berlin, 2009.

34 Leva, J.L.: A fast normal random number generator, ACM Trans. Math. Software, 18, 449 – 453, (1992).

35 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific computing. 3rd edition. Cambridge University Press, Cambridge, 2007.

36 He, D., Ekere, N.N., Cai, L.: Computer simulation of random packing of unequal particles, Phys. Rev. E, 60, 7098 – 7104, (1999).

37 Knuth, D.E.: Seminumerical algorithms. The art of computer programming, Vol. 2. 3rd edition. Addison-Wesley, Reading, MA, 1997.

38 Goldstein, H., Poole, C.P., Safko, J.L.: Classical mechanics. 3rd edition. Addison-Wesley, San Francisco, 2002.

39 Ballani, F., Daley, D.J., Stoyan, D.: Modelling the microstructure of concrete with spherical grains, Comput. Mater. Sci., 35, 399 – 407, (2006).

40 Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125 – 3131, (1962).

41 Kirkpatrick, S.: Percolation and conduction, Rev. Mod. Phys., 45, 574 – 588, (1973).

42 Jiang, F., Sousa, A.C.M.: Effective thermal conductivity of heterogeneous multi-component materials: an SPH implementation, Heat Mass Transfer, 43, 479 – 491, (2007).

43 Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409 – 436, (1952).

44 Demuth, C., Mendes, M.A.A., Ray, S., Trimis, D.: Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces, Int. J. Heat Mass Transf., 77, 979 – 994, (2014).

45 Dos Santos, W.N., Taylor, R.: Effect of porosity on the thermal conductivity of alumina, High Temp.-High Press., 25, 89 – 98, (1993).

46 Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal conductivity of the elements: a comprehensive review, J. Phys. Chem. Ref. Data, Suppl., 3, 1 – 796, (1974).

47 Span, R.: Properties of dry air. In: Stephan, P. (Ed.): VDI Heat Atlas. 2nd edition. Springer-Verlag, Berlin, Heidelberg, 172 – 191, 2010.

48 Touloukian, Y.S., Kirby, R.K., Taylor, E.R., Lee, T.Y.R.: Thermal expansion, Nonmetallic Solids. Vol. 13 in Touloukian, Y.S., Ho, C.Y. (Eds.): Thermophysical properties of matter: The TPRC Data Series; a Comprehensive Compilation of Data. IFI/Plenum, New York, 1977.

49 Fiquet, G., Richet, P., Montagnac, G.: High-temperature thermal expansion relationship of lime, periclase, corundum and spinel, Phys. Chem. Miner., 27, 103 – 111, (1999).

50 Riley, D.P.: The thermal expansion of graphite: part II. Theoretical, Proc. Phys. Soc. London, 57, 486 – 495, (1945).

51 Tsang, D.K.L., Marsden, B.J., Fok, S.L., Hall, G.: Graphite thermal expansion relationship for different temperature ranges, Carbon, 43, 2902 – 2906, (2005).

52 Loretz, M., Maire, E., Baillis, D.: Analytical modelling of the radiative properties of metallic foams: contribution of X-ray tomography, Adv. Eng. Mater., 10, 352 – 360, (2008).

53 Brewster, Q.: Volume scattering of radiation in packed beds of large, opaque spheres, J. Heat Transf., 126, 1048 – 1050, (2004).

54 Palik, E.D. (Ed.): Handbook of optical constants of solids, Vol. II. Academic Press, San Diego, 1991.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH