• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Influence of Interfaces on Crack Propagation through a Layered Refractory Loaded by Thermal Shock

J. Hein, O. El Khatib, M. Kuna

Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Lampadiusstrasse 4, D-09599 Freiberg, Germany

received January 10, 2016, received in revised form March 10, 2016, accepted April 15, 2016

Vol. 7, No. 2, Pages 203-208   DOI: 10.4416/JCST2016-00004

Abstract

Layered structures have been suggested to improve the thermal shock resistance of refractories. Owing to the fast temperature increase of the outer surface, high thermal tensile stresses occur inside the refractory. Depending on the intensity of thermal shock and the material, cracks may arise and grow through and between the layers. To study the behavior of such a crack system and the influence of interfaces on it, a symmetrically layered strip is considered. The cracks through the layers and along the interfaces are modeled using cohesive zones. Systematic changes of the cohesive parameters and their consequences on crack growth through the layers of the strip are shown.

Download Full Article (PDF)

Keywords

Keywords: Refractories, multilayer ceramics, thermal shock, cohesive zones, interfaces, crack growth

References

1 Hein, J., Scheithauer, U., Haderk, K., Kuna, M., Michaelis, A.: Prospects of a new generation of refractories made by ceramic multilayer technology, Refractories Manual, 2, 91 – 95, (2012).

2 Lemaitre, J.: Conditions of crack arrest by interfaces. In: Proceedings of the IUTAM Symposium held in Cambridge, U.K., 3-7 September 1995.

3 Clegg, W.J., Kendall, K., Alford, N. McN., Button, T.W., : A simple way to make tough ceramics, Nature, 347, 455 – 457, (1990).

4 Davis, J.B., Kristoffersson, A., Carlstroem, E., Clegg, W.J.: Fabrication and crack deflection in ceramic laminates with porous interlayers, J. Am. Ceram. Soc., 83, 2369 – 2374, (2000).

5 Pavlacka, R., Bermejo, R., Chang, Y., Green, D.J., Messing, G.L.: Fracture behavior of layered alumina microstructural composites with highly textured layers, J. Am. Ceram. Soc., 96, 1577 – 1585, (2013).

6 Harmer, M.P., Chan, H.M., Miller, G.A.: Unique opportunities for microstructural engineering with duplex and laminar ceramic composites, J. Am. Ceram. Soc., 75, [7], 1715 – 1728, (1992).

7 Russo, C.J., Harmer, M.P., Chan, H.M., Miller, G.A.: Design of laminated ceramic composite for improved strength and toughness, J. Am. Ceram. Soc., 75, [12], 3396 – 4000, (1992).

8 Lakshminarayanan, R., Shetty, D.K.: Toughening of layered ceramic composites with residual surface compression, J. Am. Ceram. Soc., 79, [1], 79 – 87, (1996).

9 Clegg, W.J.: Design of ceramic laminates for structural applications, Mater. Sci. Tech., 14, 483 – 495, (1998).

10 Rao, M.P., Roedel, J., Lange, F.F.: Residual stress induced R-curves in laminar ceramics that exhibit a threshold strength, J. Am. Ceram. Soc., 84, [11], 2722 – 2724, (2001).

11 Sglavo, V.M., Paternoster, M., Bertoldi, M.: Tailored residual stresses in high reliability alumina-mullite ceramic laminates, J. Am. Ceram. Soc., 88 [10], 2826 – 2832, (2005).

12 Sglavo, V. M., Bertoldi, M.: Design and production of ceramic laminates with high mechanical resistance and reliability, Acta Mater., 54, [18], 4929 – 4937, (2006).

13 Lube, T., Pascual, J., Chalvet, F., Portu, G.: Effective fracture toughness in Al2O3 – Al2O3/ZrO2 laminates, J. Eur. Ceram. Soc., 27, 1449 – 1453, (2007).

14 Pascual, J., Lube, T., Danzer, R.: Fracture statistics of ceramic laminates strengthened by compressive residual stresses, J. Eur. Ceram. Soc., 28, [8], 1551 – 1556, (2008).

15 Sglavo, V.M., Bertoldi, M.: Ceramic laminates with high mechanical reliability by design. mechanical properties and performance of engineering ceramics and Composites: A collection of papers presented at the 29th International Conference on Advanced Ceramics and Composites, Jan 23 – 28, 2005, Cocoa Beach, FL, Ceram. Eng. Sci. Proc., 26, [2], 363 – 370, (2009).

16 Hein, J., Kuna, M.: Optimal design of layered refractories for thermal shock resistance. In: ECCOMAS 2012 – European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 4511 – 4524, (2012).

17 Ševeček, O., Kotoul, M., Leguillon, D., Martin, E., Bermejo, R.: Understanding the edge crack phenomenon in ceramic laminates, Fract. Struct. Integrity, 0, [34], 362 – 370, (2015).

18 Bermejo, R., Torres, Y., Sánchez-Herencia, A.J., Baudín, C., Anglada, M., Llanes, L.: Residual stresses, strength and toughness of laminates with different layer thickness ratios, Acta Mater., 54, [18], 4745 – 4757, (2006).

19 Bermejo, R., Baudín, C., Moreno, R., Llanes, L., Sánchez-Herencia, A.J.: Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers, Compos. Sci. Tech., 67, [9], 1930 – 1938, (2007).

20 Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials, Adv. App. Mech., 29, 63 – 191, (1992).

21 Zhang, W., Telle, R., Uebel, J.: R-curve behaviour in weak interface-toughened SiC-C laminates by discrete element modelling, J. Eur. Ceram. Soc., 34, 217 – 227, (2014).

22 Oechsner, M., Hillman, C., Lange, F.F.: Crack bifurcation in laminar ceramic composites, J. Am. Ceram. Soc., 79, 1834 – 1838, (1996).

23 Hbaieb, K., McMeeking, R.M., Lange, F.F.: Crack bifurcation in laminar ceramics having large compressive stress, Int. J. Solids Struct., 44, [10], 3328 – 3343, (2007).

24 Bermejo, R., Danzer, R.: High failure resistance layered ceramics using crack bifurcation and interface delamination as reinforcement mechanisms, Eng. Fract. Mech., 77 [11], 2126 – 2135, (2010).

25 Chen, C.R., Bermejo, R., Kolednik, O.: Numerical analysis on special cracking phenomena of residual compressive inter-layers in ceramic laminates, Eng. Fract. Mech., 77 [13], 2567 – 2576, (2010).

26 Náhlík, L., Stegnerová, K., Hutař, P.: Estimation of stepwise crack propagation in ceramic laminates with strong interfaces, Frattura ed Integrità Strutturale, 34, 137 – 145, (2015).

27 Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., Pettit, F.S.: Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci., 46, [5], 505 – 553, (2001).

28 Hutchinson, J.W., Evans, A.G.: On the delamination of thermal barrier coatings in a thermal gradient, Surf. Coat. Tech., 149, [2 – 3], 179 – 184, (2002).

29 Chen, X., Hutchinson, J.W., He, M.Y., Evans, A.G.: On the propagation and coalescence of delamination cracks in compressed coatings: with application to thermal barrier systems, Acta Mater., 51 [7], 2017 – 2030, (2003).

30 Xu, T., He, M.Y., Evans, A.G.: A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide, Acta Mater., 51, [13], 3807 – 3820, (2003).

31 He, M.Y., Hutchinson, J.W., Evans, A.G.: Simulation of stresses and de-lamination in a plasma-sprayed thermal barrier system upon thermal cycling, Mater. Sci. Eng.: A, 345, [1 – 2], 172 – 178, (2003).

32 Chen, X., Wang, R., Yao, N., Evans, A.G., Hutchinson, J.W., Bruce, R.W.: Foreign object damage in a thermal barrier system: mechanisms and simulations, Mater. Sci. Eng.: A, 352, [1 – 2], 221 – 231, (2003).

33 He, M.Y., Mumm, D.R., Evans, A.G.: Criteria for the delamination of thermal barrier coatings: with application to thermal gradients, Surf. Coat. Tech., 185, [2 – 3], 184 – 193, (2004).

34 Evans, A.G., Hutchinson, J.W.: The mechanics of coating delamination in thermal gradients, Surf. Coat. Tech., 201, [18], 7905 – 7916, (2007).

35 Krämer, S., Faulhaber, S., Chambers, M., Clarke, D.R., Levi, C.G., Hutchinson, J.W., Evans, A.G.: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration, Mater. Sci. Eng.: A, 490, [1 – 2], 26 – 35, (2008).

36 Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an Acoustic emission method, Acta Mater., 59, [17], 6519 – 6529, (2011).

37 Fleck, N.A., Cocks, A.C.F., Lampenscherf, S.: Thermal shock resistance of air plasma sprayed thermal barrier coatings, J. Eur. Ceram. Soc., 34, [11], 2687 – 2694, (2014).

38 Kim, M.-S., Myoung, S.-W., Lu, Z., Lee, J.-H., Jung, Y-G., Choi, B.-G., Kim, I.-S., Cho, C.-Y.: Thermal durability of thermal barrier coatings with layered bond coat in cyclic thermal exposure, J. Ceram. Soc. Japan, 122, [12], 982 – 988, (2014).

39 Nayebpashaee, N., Seyedein, S.H., Aboutalebi, M.R., Hadavi, S.M.M.: Finite element simulation of residual stress and failure mechanism in plasma sprayed thermal barrier coatings using actual microstructure as the representative volume, Surf. Coat. Tech., 291, 103 – 114, (2016).

40 Hein, J., Kuna, M.: Optimizing thermal shock resistance of layered refractories, Adv. Eng. Mater., 14, 408 – 415, (2012).

41 Hein, J., Storm, J., Kuna, M.: Numerical thermal shock analysis of functionally graded and layered materials, Int. J. Therm. Sci., 60, 41 – 51, (2012).

42 Kuna, M.: Finite elements in fracture mechanics – theory – numerics – applications. Springer Netherlands, Dordrecht, 2013.

43 Schwalbe, K.-H., Scheider, I., Cornec, A.: Guidelines for applying cohesive models to the damage behaviour of engineering materials and structures, Springer-Verlag, Berlin Heidelberg, 2013.

44 Abaqus 6.12 – 3. Abaqus/CAE User's Manuel, ©Dassault Systemes, 2012.

45 Roth, S.: Development and implementation of cyclic cohesive zone models for the simulation of material fatigue (in German), Dissertation, TU Bergakademie, Freiberg, 2015.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH