Articles
All articles | Recent articles
Influence of Titanium Silicide Active Filler on the Microstructure Evolution of Borosiloxane-Derived Si-B-O-C ceramics
V. Vijay1, S. Bhuvaneswari2, V. M. Biju3, R. Devasia1
1 Ceramic Matrix Products Division, Thiruvananthapuram 695022, Kerala, India
2 Analytical and Spectroscopy Division, Thiruvananthapuram 695022, Kerala, India
3 Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
received July 29, 2015, received in revised form September 4, 2015, accepted September 30, 2015
Vol. 7, No. 1, Pages 97-106 DOI: 10.4416/JCST2015-00040
Abstract
Interactions between a typical polyborosiloxane containing methyl and vinyl functionalities, (BoSiVi) and active filler (TiSi2) at 1500 °C under inert atmosphere were studied. The effects of filler content on the volume shrinkage, porosity, phase evolution and microstructure of the resulting ceramic were studied in detail. The optimum concentration of the active filler to fabricate Si-B-Ti-O-C ceramic with zero volume shrinkage was calculated. Pore size distribution uniformity in the resulting ceramic was increased with the incorporation of the filler into the polymer. XRD and Raman analyses confirm the evolution of TiC, TiOC, TiB2, and SiC ceramics with stacking faults by active-filler-controlled polyborosiloxane pyrolysis. SEM-EDX, FESEM and HR-TEM analyses reveal the growth of ceramic nanofibres on the ceramic matrix as the result of a novel solution-precipitation process. Polyborosiloxane/active filler reactions are found to have a highly significant influence on the volume shrinkage, porosity, phase evolution, etc. of the final ceramic, which are critical parameters of an advanced structural material.
Download Full Article (PDF)
Keywords
Polyborosiloxanes, active filler controlled polymer pyrolysis (AFCOP), catalyst-assisted pyrolysis, ceramic nanofiber, titanium disilicide
References
1 Bernard, S., Fiaty, K., Cornu, D., Miele, P., Laurent, P.: Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly [β(methylamino)borazine] precursors into boron nitride, J. Phys. Chem. B., 110, 9048 – 9060, (2006).
2 Blum, Y.D., Macqueen, D.B., Kleebe, H.J.: Synthesis and characterization of carbon-enriched silicon oxycarbides, J. Eur. Ceram. Soc., 25, 143 – 149, (2005).
3 Naslain, R.: Design preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Comp. Sci. Tech., 64, 155 – 170, (2004).
4 Siqueira, R.L., Yoshida, I.V.P., Pardini, L.C., Schiavon, M.A.: Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites, Mater. Res., 10, 147 – 151, (2007).
5 Vijay, V., Prabhakaran, P.V., Devasia, R.: Processing and properties of SiCf/SiBOC ceramic matrix composites by polyborosiloxane impregnation and pyrolysis. In: Proceedings of Carbon Materials 2012 (CCM12) Conference. BARC, Mumbai, 2013.
6 Siqueira, R.L., Pardini, L.C., Yoshida, I.V.P., Schiavon, M.A.: The protective role of poly(borosiloxanes)-derived ceramics in carbon fiber composite, Mater. Sci. Forum, 587, 182 – 186, (2008).
7 Schiavon, M.A., Armelin, N.A., Yoshida, I.V.P.: Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics, Mater. Chem. Phys., 112, 1047 – 1054, (2008).
8 Sreejith, K.J., Packirisamy, S.: Phenylborosiloxane-derived ceramic matrix composites. In: Proceedings of High Temperature Ceramic Materials and Composites. Berlin, 2010.
9 Swaminathan, S., Painuly, A., Manwatkar, S.K., Packirisamy, S.: Preceramic polymer derived C/C-SiC and C/C-SiBCO composites for high temperature applications. In: Proceedings of High Temperature Ceramic Materials and Composites. Berlin, 2010.
10 Greil, P., Seibold, M.: Modeling of dimensional changes during polymer-ceramic conversion for bulk component fabrication, J. Mater. Sci., 27, 1053 – 1060, (1992).
11 Greil, P.: Active filler controlled polymer pyrolysis, J. Am. Ceram. Soc., 76, 207 – 213, (1993).
12 Cordelair, J., Greil, P.: Electrical characterization of polymethylsiloxane/MoSi2-derived composite ceramics, J. Am. Ceram. Soc., 84, 2256 – 2259, (2001).
13 Greil, P.: Net shape manufacturing of polymer derived ceramics, J. Eur. Ceram. Soc., 18, 1905 – 1914, (1998).
14 Dernovsek, O., Bressiani, J.C., Bressiani, A.H.A., Acchar, W., Greil, P.: Reaction bonded niobium carbide ceramics from polymer-filler mixtures, J. Mater. Sci., 35, 2201 – 2207, (2000).
15 Kaindl, A., Lehner, W., Greil, P., Kim, D.J.: Polymer-filler derived Mo2C ceramics, Mater. Sci. Eng. A, 260, 101 – 107, (1999).
16 Maillé, L., Le Ber, S., Dourges, M.A., Pailler, R., Guette, A., Roger, J.: Manufacturing of ceramic matrix composite using a hybrid process combining TiSi2 active filler infiltration and preceramic impregnation and pyrolysis, J. Eur. Ceram. Soc., 34, 189 – 195, (2014).
17 Sreejith, K.J.: Polymer derived ceramics and their high temperature applications. PhD thesis, University of Kerala, 2011.
18 Packirisamy, S., Devapal, D., Prabhakaran, P.V., Sreejith, K.J., Paul, A., Painuly, A.: A process for solvent less synthesis of resinous borosiloxane oligomers as precursors for ceramics. Indian Patent Application 113/CHE/2010 (2010).
19 Devapal, D., Packirisamy, S., Sreejith, K.J., Ravindran, P.V., George, B.K.: Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes, J. Inorg. Organomet. P., 20, 666 – 674, (2010).
20 Soraru, G.D., Campostrini, R., Maurina, S., Babonneau, F.: Gel precursor to silicon oxycarbide glasses with ultra high ceramic yield, J. Am. Ceram. Soc., 80, 999 – 1004, (1997).
21 Schiavon, M.A.: Crystallization behavior of novel silicon boron oxycarbide glasses, J. Am. Ceram. Soc., 87, 203 – 208, (2004).
22 Allahverdi, M., Cannon, W.R., Danforth, S.C.: Processing and properties of Blackglas™-Nextel™ 312 (BN) composites incorporating fillers, J. Am. Ceram. Soc., 83, 2929 – 2937, (2000).
23 Lohse, B.H., Calka, A., Wexler, D.: Raman spectroscopy as a tool to study TiC formation during controlled ball milling, J. App. Phys., 97, 114912 – 114917, (2005).
24 Chollon, G.: Structural and textural analysis of SiC-based and carbon CVD coatings by raman microspectroscopy, Thin Solid Films, 516, 388 – 396, (2007).
25 Baek, Y., Ryu, Y.H., Yong, K.: Structural characterization of H-SiC nanowires synthesized by direct heating method, Mater. Sci. Eng. C, 26, 805 – 808, (2006).
26 Jou, S., Hsu, C.K.: Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane, Mater. Sci. Eng. B, 106, 275 – 281, (2004).
27 Scheffler, M., Greil, P., Berger, A., Pippel, E., Woltersdorf, J.: Nickel-catalyzed in situ formation of carbon nanotubes and turbostratic carbon in polymer-derived ceramics, Mater. Chem. Phys., 84, 131 – 139, (2004).
28 Berger, A., Pippel, E., Woltersdorf, J., Scheffler, M., Cromme, P., Greil. P.: Nano-processes in polymer-derived Si-O-C ceramics: electron microscopic observations and reaction kinetics, Phys. Stat. Solid. A, 202, 2277 – 2286, (2005).
29 Pellegrini, P.W., Feldman, J.M.: Liquid phase epitaxial growth of SiC from transition-metal silicide solvents, J. Crys. Growth, 27, 320 – 324, (1974).
30 Weimer, A.W., Nilsen, K.J., Cochran, G.A., Roach, R.P.: Kinetics of carbothermal reduction synthesis of beta silicon carbide, AIChEJ, 39, 493 – 503, (1993).
Copyright
Göller Verlag GmbH