Articles
All articles | Recent articles
Processing of All-Oxide Ceramic Matrix Composites with RBAO Matrices
P.O. Guglielmi1, D.E. García2, M.P. Hablitzel2, D. Blaese1, D.P. Goulart2, A. Borchert1, D. Hotza3, R. Janssen1
1 Institute of Advanced Ceramics, Hamburg University of Technology (TUHH), Denickestrasse 15, 21073 Hamburg, Germany
2 Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), 88040 – 970 Florianópolis, Brazil
3 Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040 – 970 Florianópolis, Brazil
received Juli 23, 2015, received in revised form August 08, 2015, accepted September 30, 2015
Vol. 7, No. 1, Pages 87-96 DOI: 10.4416/JCST2015-00038
Abstract
A methodology to produce full-scale, all-oxide composites with porous reaction-bonded aluminum oxide (RBAO) matrices is presented. Composites are produced by a two-step impregnation route, in which alumina fiber fabrics are first infiltrated with an ethanol-based slurry of the RBAO particles and then laminated between layers of an RBAO-loaded paraffin-based suspension to produce thermoplastic prepregs. The composition of the RBAO precursor powders is tailored for each of these suspensions, so that low-to-zero shrinkage is achieved during sintering and all-oxide composites with a reduced amount of shrinkage-related matrix cracks are produced. Processing challenges faced during the development of these composites are presented and discussed. These include the formation of matrix voids owing to the evaporation of volatile species from the RBAO powder surfaces that remain entrapped in the paraffin-based suspension during lamination. Despite these voids, composites containing ∼ 36 vol% fibers exhibit a flexural strength of ∼ 240 MPa, together with a non-catastrophic, stepwise failure, similar to that of layered ceramics.
Download Full Article (PDF)
Keywords
Ceramic matrix composites, RBAO, processing, microstructure, properties
References
1 Chawla, K.K.: Ceramic Matrix Composites, 2nd edition. Kluwer Academic Publishers, Boston, 2003.
2 Schmücker, M., Mechnich, P.: All-oxide ceramic matrix composites with porous matrices, In: Ceramic Matrix Composites. WILEY-VCH Verlag GmbH & Co., Weinheim, 2008, pp. 205 – 229.
3 Simon, R.A.: Progress in processing and performance of porous-matrix oxide/oxide composites, Int. J. Appl. Ceram. Tec., 2, [2], 141 – 149, (2005).
4 Rüdinger, A., Pritzkow, W.: The development of oxide ceramic fiber composites at the Fraunhofer ISC/HTL centre in cooperation with W.E.C. Pritzkow Spezialkeramik, (in German), Keramische Zeitschrift, 03, 166 – 169, (2013).
5 Mattoni, M.A., Yang, J.Y., Levi, C.G., Zok, F.W.: Effects of matrix porosity on the mechanical properties of a porous-matrix, all-oxide ceramic composite, J. Am. Ceram. Soc., 84, [11], 2594 – 2602, (2001).
6 Mah, T., Keller, K.A., Cinibulk, M.K.: Method of making crack-free ceramic matrix composites, US 8,562,901 B1 (24 August 2009).
7 Dryden, J., Zok, F.W.: Thermal resistance of bridged cracks in fiber-reinforced ceramic composites, J. Appl. Phys., 89, [8], 4599 – 4611, (2001).
8 McDonald, K.R., Dryden, J.R., Zok, F.W.: Effects of matrix cracks on the thermal diffusivity of a fiber-reinforced ceramic composite, J. Am. Ceram. Soc., 84, [9], 2015 – 2021, (2001).
9 Claussen, N., Le, T., Wu, S.: Low-shrinkage reaction-bonded alumina, J. Eur. Ceram. Soc., 5, 29 – 35, (1989).
10 Holz, D., Wu, S., Scheppokat, S., Claussen, N.: Effect of processing parameters on phase and microstructure evolution in RBAO ceramics, J. Am. Ceram. Soc., 77, [10], 2509 – 2517, (1994).
11 Janssen, R., Wendorff, J., Claussen, N.: Fiber reinforcement of reaction bonded oxide ceramics, In: High-Temperature Ceramic-Matrix Composites II. The American Ceramic Society, Westerville, 1995, pp. 167 – 173.
12 Keller, K.A., Mah, T., Boakye, E.E., Parthasarathy, T.A.: Gel-casting and reaction bonding of oxide-oxide minicomposites with monazite interphase, 21, [3], 525 – 534, (2000).
13 Wendorff, J.: Synthesis and properties of long-fibre-reinforced oxide ceramic composites for high-temperature applications, (in German),VDI Verlag GmbH, Düsseldorf, 1997.
14 Guglielmi, P.O., Blaese, D., Hablitzel, M.P., Nunes, G.F., Lauth, V.R., Garcia, D., Al-Qureshi, H.A., Hotza, D., Janssen, R.: Multilayered fiber-reinforced oxide composites produced by lamination of thermoplastic prepregs, Adv. Sci. Technol., 89, 145 – 150, (2014).
15 Guglielmi, P.O., Blaese, D., Hablitzel, M.P., Nunes, G.F., Lauth, V.R., Hotza, D., Al-Qureshi, H.A., Janssen, R.: Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route, Ceram. Int., (2015).
16 Claussen, N., Janssen, R., Holz, D.: Reaction bonding of aluminum oxide (RBAO), J. Ceram. Soc. Jpn., 103, [8], (1995).
17 Wu, S., Claussen, N.: Reaction-bonding of ZrO2-containing Al2O3, Solid State Phenom., 25 – 26, 293 – 300, (1992).
18 Sheedy, P.M., Caram, H.S., Chan, H.M., Harmer, M.P.: Effects of zirconium oxide on the reaction bonding of aluminum oxide, J. Am. Ceram. Soc., 84, [5], 986 – 990, (2001).
19 Goushegir, S.M., Guglielmi, P.O., da Silva, J.G.P., Hablitzel, M.P., Hotza, D., Al-Qureshi, H.A., Janssen, R.: Fiber-matrix compatibility in an all-oxide ceramic composite with RBAO Matrix, J. Am. Ceram. Soc., 95, [1], 159 – 164, (2012).
20 Coronel, J.J., Janssen, R., Claussen, N.: Shaping of ceramic parts from powder-loaded wax suspensions, (in Spanish), Bol. Soc. Esp. de Ceram., 48, [5], 843 – 848, (2004).
21 Leverköhne, M., Coronel, J., Hupert, D., Gorlov, I., Janssen, R., Claussen, N.: Novel binder system based on paraffin-wax for low-pressure injection molding of metal-ceramic powder mixtures, Adv. Eng. Mater., 3, [12], 995 – 998, (2001).
22 DIN Deutsches Institut für Normung e.V.: Mechanical properties of ceramic composites at room temperature - Part 3: Determination of flexural strength 81.060.30 (DIN EN 658 – 3:2002 – 11) (Beuth Verlag GmbH, Berlin, 2002).
23 ASTM International: Standard test method for flexural properties of continuous fiber-reinforced advanced ceramic composites (C 1341 – 00) (ASTM, 2000).
24 Varna, J., Joffe, R., Berglund, L.A., Lundström, T.S.: Effect of voids on failure mechanisms in RTM laminates, Compos. Sci. Technol., 53, 241 – 249, (1995).
25 Jeong, H.: Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites, J. Compos. Mater., 31, [3], 276 – 292, (1997).
26 Costa, M.L., de Almeide, S.F.M., Rezende, M.C.: The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates, Compos. Sci. Technol., 61, 2101 – 2108, (2001).
27 Hagstrand, P.-O., Bonjour, F., Manson, J.-A.E.: The influence of void content on the structural flexural performance of unidirectional glass fiber reinforced polypropylene composites, Composites Part A, 36, 705 – 714, (2005).
28 Janssen, R., Claussen, N., Scheppokat, S., Roeger, M.: Reaction bonding and reactive sintering: a way to low cost manufacturing of alumina based components, Materials Integration, 15, [4], 75 – 79, (2002).
29 Temuujin, J., Coronel, J.J., Minjigmaa, A., Mackenzie, K.: Water content and water evolution from reaction-bonded aluminum oxide (RBAO) powder precursors, Int. J. Appl. Ceram. Techn., 5, [3], 289 – 294, (2008).
30 Wu, S., Holz, D., Claussen, N.: Mechanisms and kinetics of reaction-bonded aluminum oxide ceramics, J. Am. Ceram. Soc., 76, [4], 970 – 980, (1993).
31 Watson, M.J., Chan, H.M., Harmer, M.P., Caram, H.S.: Effects of milling liquid on the reaction-bonded aluminum oxide process, J. Am. Ceram. Soc., 81, [8], 2053 – 2060, (1998).
32 Gitzen, W.H.: Alumina as a ceramic material, the american ceramic society inc., Columbus, Ohio, 1970.
33 Sato, T.: Thermal decompostion of aluminium hydroxides, J. Therm. Anal., 32, 61 – 70, (1987).
34 Deng, Z.-Y., Ferreira, J.M.F., Tanaka, Y., Ye, J.: Physicochemical mechanism for the continuous reaction of gamma-Al2O3-modified aluminum powder with water, J. Am. Ceram. Soc., 90, [5], 1521 – 1526, (2007).
35 Guglielmi, P.O., Silva, W.R.L., Repette, W.L., Hotza, D.: Porosity and mechanical strength of an autoclaved clayey cellular concrete, Advances in Civil Engineering, 2010, 1 – 6, (2010).
36 Scheffler, Colombo, P., eds.: Cellular ceramics. structure, manufacturing, properties and applications, WILEY-VCH Verlag GmbH & Co., Weinheim, 2005.
37 Chaklader, A.C.D.: Hydrogen generation from water split reaction, US 6440385 B1 (14 August 2000).
38 Deng, Z.-Y., Liu, Y.-F., Tanaka, Y., Ye, J., Sakka, Y.: Modification of Al particle surfaces by gamma-Al2O3 and its effect on the corrosion behavior of Al, J. Am. Ceram. Soc., 88, [4], 977 – 979, (2005).
39 Petrovic, J., Thomas, G.: Reaction of aluminum with water to produce hydrogen. A study of issues related to the use of aluminum for on-board vehicular hydrogen storage, (2008).
40 Bunker, B.C., Nelson, G.C., Zavadil, K.R., Barbour, J.C., Wall, F.D., Sillivan, J.P.: Hydration of passive oxide films on aluminum, J. Phys. Chem. B, 106, (18), 4705 – 4713, (2002).
41 Holz, D.: Production and characterization of reaction-bonded Al2O3 ceramics (RBAO process) based on the example of the Al2O3/ZrO2 system, (in German), VDI-Verlag GmbH, Düsseldorf, 1994.
42 Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., Brichall, J.D.: A simple way to make tough ceramics, Nature, 347, 455 – 457, (1990).
Copyright
Göller Verlag GmbH
Acknowledgments
The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) under project JA 655/23 – 1 and the Brazilian institutions "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior" (CAPES) and "Conselho Nacional de Desenvolvimento Científico e Tecnológico" (CNPq) under project 015/09.