• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

First-Principles Study of a New Higher-Order MAX Phase of Ti5Al2C3

X.-K. Qian1,2,3, H.-Y. Wu3, H.-P. Zhu4, S.-H. Ma3, T. Jiang2

1 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
2 Zhejiang Super Lighting Electric Appliance Limited Company, Lishui 321403, PR China
3 School of Engineering and Design, Lishui University, Lishui 323000, PR China
4 School of Ecology, Lishui University, Lishui 323000, PR China

received June 15, 2015, received in revised form July 23, 2015, accepted August 23, 2015

Vol. 7, No. 1, Pages 47-52   DOI: 10.4416/JCST2015-00027

Abstract

The crystal structure of a new phase plays an important role in understanding its properties. The structure, elastic and electronic properties of Ti5Al2C3 are studied based on first-principles calculations. The simulated lattice parameter and internal coordinates are found to be in good agreement with the experimental values. It is shown that this new phase is mechanically stable. The elastic properties are estimated from the individual elastic constants with the help of Hill's approximation. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio, theoretical density and Debye temperature of Ti5Al2C3 are calculated to be 147 GPa, 124 GPa, 290 GPa, 0.17, 4.12 g/cm3 and 759 K, respectively. The band structure and DOS reveal that Ti5Al2C3 is conductive. At the Fermi level (Ef), the energy band is contributed mainly by the Ti 3d state and secondarily by the Al 3p state. Ti-Al hybridizations are located just below the Ef and are weaker than the Ti-C bonds, which are much deeper in energy.

Download Full Article (PDF)

Keywords

Ti5Al2C3, first-principles, mechanical stability, electronic structure

References

1. Barsoum, M.W.: The MN+1AXN phases: A new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 28, [1 – 4], 201 – 281, (2000).

2. Eklund, P., Beckers, M., Jansson, U., Hogberg, H., Hultman, L.: The Mn+1AXn phases: materials science and thin-film processing, Thin Solid Films, 518, [8], 1851 – 1878, (2010).

3. Qian, X.K., He, X.D., Li, Y.B., Sun, Y., Li, H., Xu, D.L.: Cyclic oxidation of Ti3AlC2 at 1000 – 1300 °C in air, Corros. Sci., 53, [1], 290 – 295, (2011).

4. He, X.D., Bai, Y.L., Zhu, C.C., Sun, Y., Li, M.W., Barsoum, M.W.: General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study, Comput. Mater. Sci., 49, [3], 691 – 698, (2010).

5. Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Atomic scale characterization of layered ternary Cr2AlC ceramic, 99, [7], 076109, (2006).

6. Wang, X.H., Li, F.Z., Chen, J.X., Zhou, Y.C.: Insights into high temperature oxidation of Al2O3-forming Ti3AlC2, Corros. Sci., 58, 95 – 103, (2012).

7. Wang, J.Y., Wang, J.M., Zhou, Y.C., Lin, Z.J., Hu, C.F.: Ab initio study of polymorphism in layered ternary carbide M4AlC3 (M = V, nb and Ta), Scripta. Mater., 58, [12], 1043 – 1046, (2008).

8. Qian, X.K., Li, Y.B., He, X.D., Fan, H.H., Yun, S.N.: First-principle study of structural and electronic properties of ternary layered Ta2AlC, J. Phys. Chem. Solids, 72, [8], 954 – 956, (2011).

9. Bai, Y.L., He, X.D., Wang, R.G., Sun, Y., Zhu, C.C., Wang, S., Chen, G.Q.: High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing, J. Eur. Ceram. Soc., 33, [13 – 14], 2435 – 2445, (2013).

10. Qian, X.K., Li, Y.B., He, X.D., Chen, Y.X., Yu, S.N.: Electrical and thermal properties of Ti3AlC2 at high temperature, 2, [3], 155 – 158, (2011).

11. Wang, X.H., Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000 – 1400 °C in air, Corros. Sci., 45, [5], 891 – 907, (2003).

12. Qian, X.K., He, X.D., Li, Y.B., Sun, Y., Zhu, C.C.: Improving the cyclic-oxidation resistance of Ti3AlC2 at 550 °C and 650 °C by preoxidation at 1100 °C, Int. J. Appl. Ceram. Tech., 7, [6], 760 – 765, (2010).

13. Qian, X.K., Li, Y.B., Sun, Y., He, X.D., Zhu, C.C.: Cyclic oxidation behavior of TiC/Ti3AlC2 composites at 550 – 950 °C in air, J. Alloy. Compd., 491, [1 – 2], 386 – 390, (2010).

14. Gupta, S., Hoffman, E.N., Barsoum, M.W.: Synthesis and oxidation of Ti2InC, Zr2InC, (Ti0.5,Zr0.5)2InC and (Ti0.5,Hf0.5)2InC in air, J. Alloy. Compd., 426, [1 – 2], 168 – 175, (2006).

15. Lin, Z.J., Li, M.S., Wang, J.Y., Zhou, Y.C.: High-temperature oxidation and hot corrosion of Cr2AlC, Acta Mater., 55, [18], 6182 – 6191, (2007).

16. Jovic, V.D., Jovic, B.M., Gupta, S., El-Raghy, T., Barsoum, M.W.: Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4, Corros. Sci., 48, [12], 4274 – 4282, (2006).

17. Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M., Murugaiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa, Nat. Mater., 2, [2], 107 – 111, (2003).

18. He, X.D., Bai, Y.L., Li, Y.B., Zhu, C.C., Kong, X.H.: In situ synthesis and mechanical properties of bulk Ti3SiC2/TiC composites by SHS/PHIP, Mater. Sci. Eng. A, 527, [18 – 19], 4554 – 4559, (2010).

19. Patel, M.K., Tallman, D.J., Valdez, J.A., Aguiar, J., Anderoglu, O., Tang, M., Griggs, J., Fu, E., Wang, Y.,Barsoum, M.W.: Effect of helium irradiation on Ti3AlC2 at 500 °C, Scripta Mater., 771 – 774, (2014).

20. Song, G.M., Li, S.B., Zhao, C.X., Sloof, W.G., van der Zwaag, S., Pei, Y.T., de Hosson, J.T.M.: Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame, J. Eur. Ceram. Soc., 31, [5], 855 – 862, (2011).

21. Huang, Z., Zhai, H., Li, M., Liu, X., Zhou, Y.: Friction behaviors and effects on current-carrying wear characteristics of bulk Ti3AlC2, Tribol. Trans., 57, [2], 300 – 307, (2014).

22. Xu, J., Yan, H., Gu, D.: Friction and wear behavior of polytetrafluoroethene composites filled with Ti3SiC2, Mater. Design, 61, 270 – 274, (2014).

23. Palmquist, J.P., Li, S., Persson, P.O.A., Emmerlich, J., Wilhelmsson, O., Hogberg, H., Katsnelson, M.I., Johansson, B., Ahuja, R., Eriksson, O., Hultman, L., Jansson, U.: Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations, Phys. Rev. B, 70, [16], 165401, (2004).

24. Hogberg, H., Eklund, P., Emmerlich, J., Birch, J., Hultman, L.: Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering, J. Mater. Res., 20, [4], 779 – 782, (2005).

25. Lane, N.J., Naguib, M., Lu, J., Hultman, L., Barsoum, M.W.: Structure of a new bulk Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC, J. Eur. Ceram. Soc., 32, [12], 3485 – 3491, (2012).

26. Zhou, Y.C., Meng, F.L., Zhang, J.: New MAX-phase compounds in the V-Cr-Al-C system, J. Am. Ceram. Soc., 91, [4], 1357 – 1360, (2008).

27. Zhang, H., Wang, X.H., Ma, Y.H., Sun, L.C., Zheng, L.Y., and Zhou, Y.C.: Cystal structure determination of nanolaminated Ti5Al2C3 by combined techniques of XRPD, TEM and ab initio calculations, J. Adv. Ceram., 1, [4], 268 – 273, (2012).

28. Hu, C.F., Zhang, H.B., Li, F.Z., Huang, Q., Bao, Y.W.: New phases' discovery in MAX phase, Int. J. Refract. Met. H., 36, 300 – 312, (2013).

29. Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC, Acta Mater., 54, [4], 1009 – 1015, (2006).

30. Wilhelmsson, O., Palmquist, J.P., Lewin, E., Emmerlich, J., Eklund, P., Persson, P.O.A., Hogberg, H., Li, S., Ahuja, R., Eriksson, O., Hultman, L., Jansson, U.: Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering, J. Cryst. Growth, 291, [1], 290 – 300, (2006).

31. Wang, X.H., Zhang, H., Zheng, L.Y., Ma, Y.H., Lu, X.P., Sun, Y.J., Zhou, Y.C.: Ti5Al2C3: A new ternary carbide belonging to MAX phases in the Ti-Al-C system, J. Am. Ceram. Soc., 95, [5], 1508 – 1510, (2012).

32. Lane, N.J., Naguib, M., Lu, J., Eklund, P., Hultman, L., Barsoum, M.W.: Comment on "Ti5Al2C3: A new ternary carbide belonging to MAX phases in the ti-al-C system", J. Am. Ceram. Soc., 95, [10], 3352 – 3354, (2012).

33. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method, J. Phys. Condes. Mat., 9, [4], 767 – 808, (1997).

34. Jiao, Z.Y., Ma, S.H., Huang, X.F.: A first-principles study on the structural, mechanical, electronic and optical properties of the Cr2(AlxGe1-x)C alloys, J. Alloy. Compd., 583, 607 – 613, (2014).

35. Xu, Y.G., Ou, X.D., Rong, X.M.: Vacancy trapping behaviors of hydrogen in Ti3SiC2: A first-principles study, Mater. Lett., 116, 322 – 327, (2014).

36. Qian, X.K., Wang, N., Li, Y.X., Zhou, Y., Wu, H.X., Li, Y.B., He, X.D.: First-principle studies of properties of ternary layered M2PbC (M = Ti, Zr and Hf), Comput. Mater. Sci., 65, 377 – 382, (2012).

37. Bai, Y.L., He, X.D., Wang, R.G., Zhu, C.C.: An ab initio study on compressibility of Al-containing MAX-phase carbides, 114, [17], 173709, (2013).

38. Zhao, S.J., Xue, J.M., Wang, Y.G., Huang, Q.: First-principles investigation of the intrinsic defects in Ti3SiC2, J. Phys. Chem. Solids, 75, [3], 384 – 390, (2014).

39. Wu, H.Y., Qian, X.K., Zhu, H.P., Lei, J., He, X.D.: First-principles study of the structural, electronic and elastic properties of ternary Zr2AN (A = Ga, In and Ti), Comput. Mater. Sci., 84, 103 – 107, (2014).

40. Li, C.L., Wang, Z.Q., Wang, C.Y.: Phase stability, mechanical properties and electronic structure of hexagonal and trigonal Ti5Al2C3: An ab initio study, Intermetallics, 33, 105 – 112, (2013).

41. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Mat., 14, [11], 2717 – 2744, (2002).

42. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations, Phys. Rev. B, 135, 188 – 5192, (1976).

43. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, [11], 7892 – 7895, (1990).

44. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple, Phys. Rev. Lett., 77, [18], 3865 – 3868, (1996).

45. Pfrommer, B.G., Cote, M., Louie, S.G., Cohen, M.L.: Relaxation of crystals with the quasi-newton method, J. Comput. Phys., 131, [1], 133 – 140, (1997).

46. Hill, R.: The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London, 65, [389] 349 – 355, (1952).

47. Gan, Y.P., Qian, X.K., He, X.D., Chen, Y.X., Yun, S.N., Zhou, Y.: Structural, elastic and electronic properties of a new ternary-layered Ti2SiN, Physica B, 406, [20], 3847 – 3850, (2011).

48. Sun, Z.M., Li, S., Ahuja, R., Schneider, J.M.: Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb and Ta), Solid State Commun., 129, [9], 589 – 592, (2004).

49. Bai, Y.L., He, X.D., Sun, Y., Zhu, C.C., Li, M.W., Shi, L.P.: Chemical bonding and elastic properties of Ti3AC2 phases (A = Si, Ge, and Sn): A first-principle study, Solid State Sci., 12, [7], 1220 – 1225, (2010).

50. Zhu, H.P., Qian, X.K., Wu, H.Y., Lei, J., Song, Y.C., He, X.D., Zhou, Y.: Cyclic oxidation of ternary layered Ti2AlC at 600 – 1000 °C in air, Int. J. Appl. Ceram. Tech., 12, [2], 403 – 410, (2015).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH