• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

The Role of Powder Preparation Method in Enhancing Fracture Toughness of Zirconia Ceramics with Low Alumina Amount

I. Danilenko, T. Konstantinova, G. Volkova, V. Burkhovetski, V. Glazunova

Donetsk Institute for Physics and Engineering NAS of Ukraine, 83114, Donetsk, Ukraine, R. Luxemburg str. 72,

received May 8, 2015, received in revised form June 17, 2015, accepted July 1, 2015

Vol. 6, No. 3, Pages 191-200   DOI: 10.4416/JCST2015-00020

Abstract

In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 – 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics.

The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

Download Full Article (PDF)

Keywords

Keywords: 3Y-TZP, fracture toughness, composite, Al2O3, structure characterization

References

1 Hannik, R., Kelly, P., Muddle, B.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, [3], 461 – 87, (2000).

2 Li, J., Watanabe, R.: Fracture toughness of Al2O3-particle-dispersed Y2O3 partially stabilized zirconia, J. Am. Ceram. Soc., 78, [4], 1079 – 1082, (1995).

3 Lopez-Esteban, S., Rodriguez-Suarez, T., Esteban-Betego, F., Pecharroma, C., Moya, J.: Mechanical properties and interfaces of zirconia/nickel in micro-and nanocomposites, J. Mater. Sci., 41, [16], 5194 – 5199, (2006).

4 Vasylkiv, O., Sakka, Y., Skorokhod, V.: Low-temperature processing and mechanical properties of zirconia and Zirconia-Alumina nanoceramics, J. Am. Ceram. Soc., 86, [2], 299 – 304, (2003).

5 Kern, F.: Ytterbia-neodymia-costabilized TZP – breaking the limits of strength -toughness correlations for zirconia?, J. Eur. Ceram. Soc., 33, [5], 965 – 973, (2013).

6 Bartolome, J.F., Gutierrez-Gonzalez, C.F., Torrecillas, R.: Mechanical properties of alumina-zirconia-Nb micro-nanohybrid composites, Comp. Sci. and Tech., 68, [6], 1392 – 1398, (2008).

7 Levin, I., Kaplan, W., Brandon, D., Layyous, A.: Effect of SiC submicrometer particle size and content on fracture toughness of alumina-SiC "nanocomposites", J. Am. Ceram. Soc., 78, [1], 254 – 256, (1995).

8 Szutkowska, M.: Fracture resistance behavior of alumina-zirconia composites, J. Mater. Process Tech., 153 – 154, 868 – 874, (2004).

9 Shin, Y., Rhee, Y., Kang, S., Experimental Evaluation of Toughening Mechanisms in Alumina-Zirconia Composites, J. Am. Ceram. Soc., 82, [5], 1229 – 1232, (1999).

10 Chen, R.Z., Tuan, W.H.: Toughening alumina with silver and zirconia inclusions, J. Eur. Ceram. Soc., 21, [16], 2887 – 2893, (2001).

11 Tuan, W.H., Chen, R.Z.: Interactions between toughening mechanisms: transformation toughening versus plastic deformation, J. Mater. Res., 17, [11], 2921 – 2928, (2002).

12 Lange, F.: Transformation toughening, J. Mater. Sci., 17, [1], 225 – 263, (1982).

13 Nevarez-Rascon, A., Aguilar-Elguezabal, A., Orrantia, E., Bocanegra-Bernal, M.H.: Compressive strength, hardness and fracture toughness of Al2O3 whiskers reinforced ZTA and ATZ nanocomposites: weibull analysis, Int. J. Refract. Met. H., 29, [3], 333 – 340, (2011).

14 Santos, C., Teixeira, L., Daguano, J., Rogero, S., Strecker, K., Elias, C.: Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles, Ceram. Int., 35, [2], 709 – 718, (2009).

15 Li, S., Izui, H., Okano, M., Zhang, W., Watanabe, T.: Microstructure and mechanical properties of ZrO2 (Y2O3)-Al2O3 nanocomposites prepared by spark plasma sintering, Particuology. 10, [3], 345 – 351, (2012).

16 Kern, F., Palmero, P.: Microstructure and mechanical properties of alumina 5 vol% zirconia nanocomposites prepared by powder coating and powder mixing routes, Ceram. Int., 39, [1], 673 – 682, (2013).

17 Kageyama, K., Harada, Y., Kato, H.: Preparation and mechanical properties of Alumina-Zirconia composites with agglomerated structures using pre-sintered powder, Mater. Trans., 44, [8], 1571 – 1576, (2003).

18 Nevarez-Rascon, A., Aguilar-Elguezabal, A., Orrantia, E., Bocanegra-Bernal, M.H.: On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content, Int. J. Refract. Met. H., 27, 962 – 970, (2009).

19 Choi, S., Awaji, H.: Nanocomposites – a new material design concept, Sci. Technol. Adv. Mat., 6, 2 – 10, (2005).

20 Danilenko, I., Glazunov, F., Konstantinova, T., Volkova, G., Burkhovetski, V.: Effect of oxide nanofillers on fabrication, structure, and properties of zirconia-based composites, J. Eur. Ceram. Soc., 33, [12], 2321 – 2325, (2013).

21 Pilipenko, N., Konstantinova, T., Tokiy, V., Danilenko, I., Saakjants, V., Primisler, V.: Peculiarities of zirconium hydroxide microwave drying process, Functional Materials, 9, [3], 323 – 327, (2002).

22 Konstantinova, T., Danilenko, I., Glazunova, V., Volkova, G., Gorban, O.: Mesoscopic phenomena in oxide nanoparticles systems: processes of growth, J. Nanopart. Res., 13, [9], 4015 – 4023, (2011).

23 Garvie, R.C., Nicholson, P.S.: Phase analysis in zirconia systems, J. Am. Ceram. Soc., 55, [6], 303 – 305, (1972).

24 Niihara, K.: A fracture mechanics analysis of indentation-induced palmqvist crack in ceramics, J. Mater. Sci. Lett., 2, [5], 221 – 223, (1983).

25 Navarro, L.M., Recio, P., Duran, P.: Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems, J. Mater. Sci., 30, [8], 193l – 1938, (1995).

26 Bhaduri, S., Bhaduri, S.B.: Recent developments in ceramic nanocomposites, J. Mater. 50, [1], 44 – 51, (1998).

27 Evans, A.G., Cannon, R.M.: Toughening of brittle solids by martensitic transformation, Acta Metall. Mater., 34, [5], 761 – 800, (1986).

28 Faber, K.T., Evans, A.G.: Crack deflection processes-I. theory, Acta Metall. Mater., 31, [4], 165 – 176, (1983).

29 Taya, M., Hayashi, S., Kobayashi, A.S., Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 73, [5], 1382 – 1391, (1990).

30 Evans, A.G.: Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc., 73, [2], 187 – 205, (1990).

31 Naglieri, V., Palmero, P., Montanaro, L., Chevalier, J.: Elaboration of alumina-zirconia Composites: role of the zirconia content on the microstructure and mechanical properties, Materials, 6, [5], 2090 – 2102, (2013).

32 Sommer, F., Landfried, R., Kern, F., Gadow, R.: Mechanical properties of zirconia toughened alumina with 10 – 24 vol% 1Y-TZP reinforcement, J. Eur. Ceram. Soc., 32, [15], 4177 – 4184, (2012).

33 Yeomans, J.A., Ductile particle ceramic matrix composites — Scientific curiosities or engineering materials?, J. Eur. Ceram. Soc., 28, [7], 1543 – 1550, (2008).

34 Matsui, K., Ohmichi, N., Ohgai, M., Enomoto, N., Hojo, J.: Sintering kinetics at constant rates of Heating: effect of Al2O3 on the initial sintering stage of fine zirconia powder, J. Am. Ceram. Soc., 88, [12], 3346 – 3352, (2005).

35 Guo, X., Yuan, R.: Roles of alumina in zirconia-based solid electrolyte, J. Mater. Sci., 30, [4], 923 – 931, (1995).

36 Matsui, K., Ohmichi, N., Ohgai, M., Yoshida, H., Ikuhara, Y.: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal, J. Mater. Res., 21, [9], 2278 – 2289, (2006).

37 Matsui, K., Yoshida, H., Ikuhara, Y.: Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc., 30, [7], 1679 – 1690, (2010).

38 Tan, H., Yang, W.: Toughening mechanisms of nanocomposite ceramics, Mech. Mater., 30, [2], 111 – 123, (1998).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH