Articles
All articles | Recent articles
An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications
D. Hanft1, J. Exner1, M. Schubert1, T. Stöcker1, P. Fuierer2, R. Moos1
1 Department of Functional Materials, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
2 Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, 87801 New Mexico, USA
received May 2, 2015, received in revised form June 23, 2015, accepted July 14, 2015
Vol. 6, No. 3, Pages 147-182 DOI: 10.4416/JCST2015-00018
Abstract
Ceramic materials typically have to be sintered at high temperatures, often above 1000 °C. This precludes the coating of lower-melting substrate materials, such as metals, glasses and polymers, with dense and robust thin or thick ceramic films. In addition, decomposition or uncontrolled volatilization of the ceramic components can occur at elevated temperatures. As an alternative, the Aerosol Deposition (AD) method is a spray coating process to produce dense and nanocrystalline ceramic films at room temperature directly from an initial bulk powder on almost any substrate material with no need for sintering. This great potential attracts the attention of a growing number of research groups as reflected by a rapidly growing number of publications.
The objective of this review is to give a holistic overview of the AD science and technology. It describes typical process equipment and parameters and starting powder and resulting film characteristics. Special attention is given to Al2O3, TiO2, BaTiO3 and Pb(Zr,Ti)O3, as they represent a few of the most frequently used ceramics in AD. Aerosol Deposition of many other materials are also described to demonstrate the versatility of this new technology, its ability to realize novel combinations of materials and microstructures, and its suitability for future applications. Also discussed is the current state of understanding of aerosol deposition behavior and the experimental and modeling approaches used to explain the primary aerosol deposition mechanism(s).
Download Full Article (PDF)
Keywords
Dense ceramic films, room temperature impact consolidation (RTIC), vacuum cold spray (VCS), vacuum kinetic spraying (VKS), gas deposition.
References
1 Exner, J., Fuierer, P., Moos, R.: Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films, Thin Solid Films, 573, 185 – 190, (2014), doi: 10.1016/j.tsf.2014.11.037.
2 Kashu, S., Fuchita, E., Manabe, T., Hayashi, C.: Deposition of ultra fine particles using a gas jet, Jpn. J. Appl. Phys., 23, L910, (1984), doi: 10.1143/JJAP.23.L910.
3 Akedo, J., Ichiki, M., Kikuchi, K., Maeda, R.: Jet molding system for realization of three-dimensional micro-structures, Sens. Actuat., A-Phys., 69, 106 – 112, (1998), doi: 10.1016/S0924-4247(98)00059-4.
4 Akedo, J., Masaaki, I., Maeda, R.: New functional ceramic deposition method for MEMS, Ferroelectrics, 224, 331 – 337, (1999), doi: 10.1080/00150199908210584.
5 Akedo, J., Lebedev, M.: Microstructure and electrical properties of lead zirconate titanate (Pb(Zr52/Ti48)O3) thick films deposited by aerosol deposition method, Jpn. J. Appl. Phys., 38, 5397 – 5401, (1999), doi: 10.1143/JJAP.38.5397.
6 Akedo, J.: Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray Technol., 17, 181 – 198, (2008), doi: 10.1007/s11666-008-9163-7.
7 Fan, S.-Q., Yang, G.-J., Li, C.-J., Liu, G.-J., Li, C.-X., Zhang, L.-Z.: Characterization of microstructure of nano-TiO2 coating deposited by vacuum cold spraying, J. Therm. Spray Technol., 15, 513 – 517, (2006), doi: 10.1361/105996306X146901.
8 Liu, Y., Wang, Y.-Y., Yang, G.-J., Feng, J.-J., Kusumoto, K.: Effect of nano-sized TiN additions on the electrical properties of vacuum cold sprayed SiC coatings, J. Therm. Spray Technol., 19, 1238 – 1243, (2010), doi: 10.1007/s11666-010-9544-6.
9 Cao, F., Park, H., Bae, G., Heo, J., Lee, C.: Microstructure evolution of titanium nitride film during vacuum kinetic spraying, J. Am. Ceram. Soc., 96, 40 – 43, (2013), doi: 10.1111/jace.12101.
10 Kwon, J., Park, H., Lee, I., Lee, C.: Effect of gas flow rate on deposition behavior of Fe-based amorphous alloys in vacuum kinetic spray process, Surf. Coat. Technol., 259, 585 – 593, (2014), doi: 10.1016/j.surfcoat.2014.10.026.
11 Takai, S., Sakaguchi, H., Tanaka, K., Nagao, Y., Esaka, T.: Cathode performance of LiMn2O4 thick films prepared by gas-deposition for lithium rechargeable battery, Electrochemistry, 76, 293 – 296, (2008), doi: 10.5796/electrochemistry.76.293.
12 Sakaguchi, H., Iida, T., Itoh, M., Shibamura, N., Hirono, T.: Anode properties of LaSi2/Si composite thick-film electrodes for lithium secondary batteries, IOP Conf. Ser.: Mater. Sci. Eng., 1, 012030, (2009), doi: 10.1088/1757-8981/1/1/012030.
13 Schubert, M., Hanft, D., Moos, R.: Dense ceramic coatings manufactured with the Aerosol-Deposition-Method (ADM) at the department of functional materials; 2014. http://www.funktionsmaterialien.de/docs/Highlight_ADM_ENG.pdf (accessed on 12 February, 2015).
14 Akedo, J.: Aerosol deposition of ceramic thick films at room Temperature: densification mechanism of ceramic layers, J. Am. Ceram. Soc., 89, 1834 – 1839, (2006), doi: 10.1111/j.1551-2916.2006.01030.x.
15 Piechowiak, M.A., Henon, J., Durand-Panteix, O., Etchegoyen, G., Coudert, V., Marchet, P., Rossignol, F.: Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method, J. Eur. Ceram. Soc., 34, 1063 – 1072, (2014), doi: 10.1016/j.jeurceramsoc.2013.11.019.
16 Seo, D.S., Lee, J.K., Hwang, K.H., Hahn, B.-D., Yoon, S.Y.: Influence of starting powders on hydroxyapatite coatings fabricated by room temperature spraying method, J. Nanosci. Nanotechnol., 15, 6032 – 6038, (2015), doi: 10.1166/jnn.2015.10437.
17 Charles, E.R., Johnson, S.D., Kub, F.J.: ZnS/Diamond composite coatings for infrared transmission applications formed by the aerosol deposition method, Proc. SPIE, 8708, (2013), doi: 10.1117/12.2029717.
18 Lin, S.-C., Wu, W.-J.: Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method, J. Micromech. Microeng., 23, 125028, (2013), doi: 10.1088/0960-1317/23/12/125028.
19 Bae, H., Choi, J., Choi, G.M.: Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method, Solid State Ionics, 236, 16 – 21, (2013), doi: 10.1016/j.ssi.2013.01.022.
20 Yang, G.-J., Liao, K.-X., Li, C.-J., Fan, S.-Q., Li, C.-X., Li, S.: Formation of pore structure and its influence on the mass transport property of vacuum cold sprayed TiO2 coatings using strengthened nanostructured powder, J. Therm. Spray Technol., 21, 505 – 513, (2012), doi: 10.1007/s11666-012-9741-6.
21 Choi, J.-J., Cho, K.-S., Choi, J.-H., Ryu, J., Hahn, B.-D., Yoon, W.-H., Kim, J.-W., Ahn, C.-W., Yun, J., Park, D.-S.: Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition, J. Eur. Ceram. Soc., 32, 115 – 121, (2012), doi: 10.1016/j.jeurceramsoc.2011.07.036.
22 Nam, S.-M., Mori, N., Kakemoto, H., Wada, S., Akedo, J., Tsurumi, T.: Alumina thick films as integral substrates using aerosol deposition method, Jpn. J. Appl. Phys., 43, 5414 – 5418, (2004), doi: 10.1143/JJAP.43.5414.
23 Mihara, K., Hoshina, T., Takeda, H., Tsurumi, T.: Controlling factors of film-thickness in improved aerosol deposition method, J. Ceram. Soc. Jpn., 117, 868 – 872, (2009), doi: 10.2109/jcersj2.117.868.
24 Hinds, W.C.: Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd edition. Wiley, New York, (1999).
25 Lee, M., Park, J., Kim, D., Yoon, S., Kim, H., Kim, D., James, S., Chandra, S., Coyle, T., Ryu, J., Yoon, W. H., Park, D. S.: Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition, J. Aerosol Sci., 42, 771 – 780, (2011), doi: 10.1016/j.jaerosci.2011.07.006.
26 Park, J.-J., Lee, M.-W., Yoon, S.S., Kim, H.-Y., James, S.C., Heister, S.D., Chandra, S., Yoon, W.-H., Park, D.-S., Ryu, J.: Supersonic nozzle flow simulations for particle coating Applications: effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics, J. Therm. Spray Technol., 20, 514 – 522, (2011), doi: 10.1007/s11666-010-9542-8.
27 Choi, J.-J., Park, D.-S., Seong, B.-G., Bae, H.-Y.: Low-temperature preparation of dense (Gd,Ce)O2-δ-Gd2O3 composite buffer layer by aerosol deposition for YSZ electrolyte-based SOFC, Int. J. Hydrogen Energ., 37, 9809 – 9815, (2012), doi: 10.1016/j.ijhydene.2012.03.148.
28 Hatono, H., Ito, T., Matsumura, A.: Technological Development of Aerosol Deposition at TOTO Ltd. In: 4th Tsukuba International Coatings Symposium, Frontiers of Coatings Technology: Innovative Processes and Applications, 2010, 15 – 16.
29 Arndt, T.: Method and arrangement for producing superconducting layers on substrates. U.S. Patent Application 2013/0123112, (2011).
30 Henon, J., Piechowiak, M.A., Durand-Panteix, O., Etchegoyen, G., Masson, O., Dublanche-Tixier, C., Marchet, P., Lucas, B., Rossignol, F.: Dense and highly textured coatings obtained by aerosol deposition method from Ti3SiC2 powder: comparison to a dense material sintered by spark plasma sintering, J. Eur. Ceram. Soc., 35, 1179 – 1189, (2015), doi: 10.1016/j.jeurceramsoc.2014.10.012.
31 Dong-Won L., Song-Min N.: Factors affecting surface roughness of Al2O3 films deposited on cu substrates by an aerosol deposition method, J. Ceram. Process. Res., 11, 100 – 106, (2010).
32 Akedo, J.: Aerosol deposition method for fabrication of nano crystal ceramic layer, Mater. Sci. Forum, 449 – 452, 43 – 48, (2004), doi: 10.4028/www.scientific.net/MSF.449-452.43.
33 Fan, S.-Q., Li, C.-J., Yang, G.-J., Zhang, L.-Z., Gao, J.-C., Xi, Y.-X.: Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature, J. Therm. Spray Technol., 16, 893 – 897, (2007), doi: 10.1007/s11666-007-9090-z.
34 Nguyen, T.N., Denneler, S., Ahlstedt, M., Schuh, C., Moos, R.: Fabrication and characterization of optical Ceramic layers using the aerosol deposition method. In: CIMTEC 13th International Ceramics Congress, 2014.
35 Nakada, M., Tsuda, H., Ohashi, K., Akedo, J.: Aerosol deposition on transparent electro-optic films for optical modulators, IEICE Transactions on Electronics, 90, 36 – 40, (2007), doi: 10.1093/ietele/e90-c.1.36.
36 Apetz, R., Bruggen, Michel P.B.: Transparent Alumina: A light-scattering model, J. Am. Ceram. Soc., 86, 480 – 486, (2003), doi: 10.1111/j.1151-2916.2003.tb03325.x.
37 Krell, A., Blank, P., Ma, H., Hutzler, T., Bruggen, Michel P. B., Apetz, R.: Transparent sintered corundum with high hardness and strength, J. Am. Ceram. Soc., 86, 12 – 18, (2003), doi: 10.1111/j.1151-2916.2003.tb03270.x.
38 Lee, D.-W., Kim, H.-J., Kim, Y.-H., Yun, Y.-H., Nam, S.-M.: Growth process of α-Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition, J. Am. Ceram. Soc., 94, 3131 – 3138, (2011), doi: 10.1111/j.1551-2916.2011.04493.x.
39 Lebedev, M., Akedo, J.: Patterning properties of PZT thick films made by aerosol deposition, Ferroelectrics, 270, 117 – 122, (2002), doi: 10.1080/00150190211232.
40 Lee, D.-W., Kim, H.-J., Kim, Y.-N., Jeon, M.-S., Nam, S.-M.: Substrate hardness dependency on properties of Al2O3 thick films grown by aerosol deposition, Surf. Coat. Technol., 209, 160 – 168, (2012), doi: 10.1016/j.surfcoat.2012.08.012.
41 Yao, Z., Wang, C., Li, Y., Kim, H.-K., Kim, N.-Y.: Effects of starting powder and thermal treatment on the aerosol deposited BaTiO3 thin films toward less leakage currents, Nanoscale Res. Lett., 9, 435, (2014), doi: 10.1186/1556-276X-9-435.
42 Schubert, M., Exner, J., Moos, R.: Influence of carrier gas composition on the stress of Al2O3 coatings prepared by the aerosol deposition method, Materials, 7, 5633 – 5642, (2014), doi: 10.3390/ma7085633.
43 Park, J.-J., Lee, J.-G., Kim, D.-Y., Hong, J.-H., Kim, J.-J., Hong, S., Yoon, S.S.: Antibacterial and water purification activities of self-assembled honeycomb structure of aerosol deposited titania film, Environ. Sci. Technol., 46, 12510 – 12518, (2012), doi: 10.1021/es3037252.
44 Fuchita, E., Tokizaki, E., Ozawa, E., Sakka, Y.: Appearance of high-temperature phase in zirconia films made by aerosol gas deposition method, J. Ceram. Soc. Jpn., 119, 271 – 276, (2011), doi: 10.2109/jcersj2.119.271.
45 Iwata, A., Akedo, J.: Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride, J. Cryst. Growth, 275, e1269, (2005), doi: 10.1016/j.jcrysgro.2004.11.082.
46 Iwata, A., Akedo, J., Lebedev, M.: Cubic aluminum nitride transformed under reduced pressure using aerosol deposition method, J. Am. Ceram. Soc., 88, 1067 – 1069, (2005), doi: 10.1111/j.1551-2916.2005.00215.x.
47 Ryu, J., Park, D.-S., Hahn, B.-D., Choi, J.-J., Yoon, W.-H., Kim, K.-Y., Yun, H.-S.: Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature, Appl. Catal., B, 83, 1 – 7, (2008), doi: 10.1016/j.apcatb.2008.01.020.
48 Papyrin, A.: Cold spray technology, Adv. Mater. Process., 159, 49 – 51, (2001).
49 Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H.: Bonding mechanism in cold gas spraying, Acta Mater., 51, 4379 – 4394, (2003), doi: 10.1016/S1359-6454(03)00274-X.
50 van Steenkiste, T.H., Smith, J.R., Teets, R.E.: Aluminum coatings via kinetic spray with relatively large powder particles, Surf. Coat. Technol., 154, 237 – 252, (2002), doi: 10.1016/S0257-8972(02)00018-X.
51 Li, W.-Y., Li, C.-J., Wang, H.-T., Li, C.-X., Bang, H.-S.: Measurement and numerical simulation of particle velocity in cold spraying, J. Therm. Spray Technol., 15, 559 – 562, (2006), doi: 10.1361/105996306X146956.
52 Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., Klassen, T.: From particle acceleration to impact and bonding in cold spraying, J. Therm. Spray Technol., 18, 794 – 808, (2009), doi: 10.1007/s11666-009-9357-7.
53 Grujicic, M., Zhao, C., DeRosset, W., Helfritch, D.: Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater. Design, 25, 681 – 688, (2004), doi: 10.1016/j.matdes.2004.03.008.
54 Schmidt, T., Gärtner, F., Assadi, H., Kreye, H.: Development of a generalized parameter window for cold spray deposition, Acta Mater., 54, 729 – 742, (2006), doi: 10.1016/j.actamat.2005.10.005.
55 Li, C.-J., Li, W.-Y., Liao, H.: Examination of the critical velocity for deposition of particles in cold spraying, J. Therm. Spray Technol., 15, 212 – 222, (2006), doi: 10.1361/105996306X108093.
56 Kliemann, J.-O., Gutzmann, H., Gärtner, F., Hübner, H., Borchers, C., Klassen, T.: Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces, J. Therm. Spray Technol., 20, 292 – 298, (2011), doi: 10.1007/s11666-010-9563-3.
57 Sarobol, P., Hall, A.C., Urrea, D.A., Chandross, M.E., Carroll, J.D., Boyce, B.L., Mook, W.M., Kotula, P.G., McKenzie, B.B., Bufford, D.C.: Deformation behavior of sub-micron and micron sized alumina particles in compression, Albuquerque, New Mexico, (2014).
58 Yoshida, M., Ogiso, H., Nakano, S., Akedo, J.: Compression test system for a single submicrometer particle, Rev. Sci. Instrum., 76, 093905, (2005), doi: 10.1063/1.2038187.
59 Naoe, K., Nishiki, M., Sato, K.: Microstructure and electron energy-loss spectroscopy analysis of interface between cu substrate and Al2O3 film formed by aerosol deposition method, J. Therm. Spray Technol., 23, 1333 – 1338, (2014), doi: 10.1007/s11666-014-0172-4.
60 Exner, J., Hahn, M., Schubert, M., Hanft, D., Fuierer, P., Moos, R.: Powder requirements for aerosol deposition of alumina films, Adv. Powder Technol., 26, 1143-1151, (2015), doi: 10.1016/j.apt.2015.05.016.
61 Kim, J., Lee, J.I., Park, D.S., Park, E.S.: Enhancement of interface anchoring and densification of Y2O3 coating by metal substrate manipulation in aerosol deposition process, J. Appl. Phys., 117, 014903, (2015), doi: 10.1063/1.4905241.
62 Kim, C.-W., Choi, J.-H., Kim, H.-J., Lee, D.-W., Hyun, C.-Y., Nam, S.-M.: Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int., 38, 5621 – 5627, (2012), doi: 10.1016/j.ceramint.2012.04.003.
63 Maki, T., Sugimoto, S., Kagotani, T., Inomata, K., Akedo, J., Ishikawa, T., Ohmori, K.: Influence of deposition angle on the magnetic properties of Sm-Fe-N films fabricated by aerosol deposition method, J. Alloys Compd., 408 – 412, 1409 – 1412, (2006), doi: 10.1016/j.jallcom.2005.04.040.
64 Johnson, G.R., Holmquist, T.J.: An improved computational constitutive model for brittle materials, AIP Conf. Proc., 309, 981-984, (1994), doi: 10.1063/1.46199.
65 Holmquist, T.J., Templeton, D.W., Bishnoi, K.D.: Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications, Int. J. Impact Eng., 25, 211 – 231, (2001), doi: 10.1016/S0734-743X(00)00046-4.
66 Ogawa, H.: Molecular dynamics simulation on the single particle impacts in the aerosol deposition process, Mater. Trans., 46, 1235 – 1239, (2005), doi: 10.2320/matertrans.46.1235.
67 Ogawa, H.: Atomistic simulation of the aerosol deposition method with zirconia nanoparticles, Mater. Trans., 47, 1945 – 1948, (2006), doi: 10.2320/matertrans.47.1945.
68 Ogawa, H.: Molecular dynamics simulation on the modification of crystallographic orientation in fragmented particles in the aerosol-deposition process, Mater. Trans., 48, 2067 – 2071, (2007), doi: 10.2320/matertrans.MA200712.
69 Daneshian, B., Assadi, H.: Impact behavior of intrinsically brittle Nanoparticles: A molecular dynamics perspective, J. Therm. Spray Technol., 23, 541 – 550, (2013), doi: 10.1007/s11666-013-0019-4.
70 Chun, D.-M., Ahn, S.-H.: Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater., 59, 2693 – 2703, (2011), doi: 10.1016/j.actamat.2011.01.007.
71 Akedo, J., Lebedev, M.: Powder preparation in aerosol deposition method for lead zirconate titanate thick films, Jpn. J. Appl. Phys., 41, 6980 – 6984, (2002), doi: 10.1143/JJAP.41.6980.
72 Carr, R.E.: Evaluating flow properties of solids, Chem. Eng., 72, 163 – 168, (1965).
73 Exner, J., Fuierer, P., Moos, R.: Aerosol codeposition of Ceramics: mixtures of Bi2O3-TiO2 and Bi2O3-V2O5, J. Am. Ceram. Soc., 98, 717 – 723, (2014), doi: 10.1111/jace.13364.
74 Choi, J.-J., Jang, J.H., Park, D.S., Hahn, B.-D., Yoon, W.H., Park, C.: Electrical properties of lead zinc niobate - lead zirconate titanate thick films formed by aerosol deposition process, Solid State Phenom., 124 – 126, 169 – 172, (2007), doi: 10.4028/www.scientific.net/SSP.124-126.169.
75 Yuuki, K., Sato, Y., Yoshikado, S.: Fabrication of nanoporous titanium dioxide films using aerosol deposition, Key Eng. Mater., 582, 141 – 144, (2013), doi: 10.4028/www.scientific.net/KEM.582.141.
76 Sugimoto, S., Chan, V., Noguchi, M., Tezuka, N., Inomata, K., Akedo, J.: Preparation of Fe/Ni-Zn-Cu ferrite stacked films by aerosol deposition method, J. Magn. Magn. Mater., 310, 2549 – 2551, (2007), doi: 10.1016/j.jmmm.2006.11.146.
77 Seto, N., Hirose, S., Tsuda, H., Akedo, J.: Formation of tough foundation layer for electrical plating on insulator using aerosol deposition method of Cu-Al2O3 Mixed Powder, In: J. Akedo, T.-Y. Tseng, X.M. Chen, H.-T. Lin (eds.). In: Advances in multifunctional materials and systems II: John Wiley & Sons, Inc, Hoboken, NJ, USA, (2014, p. 17 – 22, ISBN 9781118771402), doi: 10.1002/9781118771402.ch2.
78 Park, J.-H., Akedo, J., Nakada, M.: Surface plasmon resonance in novel nanocomposite Gold/Lead zirconate titanate films prepared by aerosol deposition method, Jpn. J. Appl. Phys., 45, 7512 – 7515, (2006), doi: 10.1143/JJAP.45.7512.
79 Fan, S.-Q., Li, C.-J., Li, C.-X., Liu, G.-J., Yang, G.-J., Zhang, L.-Z.: Preliminary study of performance of dye-sensitized solar cell of nano-TiO2 coating deposited by vacuum cold spraying, Mater. Trans., 47, 1703 – 1709, (2006), doi: 10.2320/matertrans.47.1703.
80 Kim, H., Yoon, Y.J., Kim, J., Nam, S.: Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method, Mater. Sci. Eng., B, 161, 104 – 108, (2009), doi: 10.1016/j.mseb.2008.12.041.
81 Choi, J.-J., Hahn, B.-D., Ryu, J., Yoon, W.-H., Lee, B.-K., Park, D.-S.: Preparation and characterization of piezoelectric ceramic-polymer composite thick films by aerosol deposition for sensor application, Sens. Actuators, A, 153, 89 – 95, (2009), doi: 10.1016/j.sna.2009.04.025.
82 Liu, Y., Dang, Z., Wang, Y., Huang, J., Li, H.: Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties, Carbon, 67, 250 – 259, (2014), doi: 10.1016/j.carbon.2013.09.088.
83 Kim, D.-Y., Joshi, B.N., Park, J.-J., Lee, J.-G., Cha, Y.-H., Seong, T.-Y., Noh, S. in, Ahn, H.-J., Yoon, S.S.: Graphene-titania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells, Ceram. Int., (2014), doi: 10.1016/j.ceramint.2014.03.131.
84 Kim, Y.-H., Osada, M., Kim, H.-K., Nam, S.-M.: Percolative BaTiO3/Carbon-nanotube composite films employing aerosol deposition, Jpn. J. Appl. Phys., 51, 09LC07, (2012), doi: 10.1143/JJAP.51.09LC07.
85 Hahn, B.-D., Park, D.-S., Choi, J.-J., Ryu, J., Yoon, W.-H., Choi, J.-H., Kim, H.-E., Kim, S.-G.: Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy, Surf. Coat. Technol., 205, 3112 – 3118, (2011), doi: 10.1016/j.surfcoat.2010.11.029.
86 Wang, Y.-Y., Liu, Y., Li, C.-J., Yang, G.-J., Feng, J.-J., Kusumoto, K.: Investigation on the electrical properties of vacuum cold sprayed SiC-MoSi2 coatings at elevated temperatures, J. Therm. Spray Techn., 20, 892 – 897, (2011), doi: 10.1007/s11666-011-9635-z.
87 Kim, Y.-H., Kim, H.-J., Koh, J.-H., Ha, J.-G., Yun, Y.-H., Nam, S.-M.: Fabrication of BaTiO3-PTFE composite film for embedded capacitor employing aerosol deposition, Ceram. Int., 37, 1859 – 1864, (2011), doi: 10.1016/j.ceramint.2011.02.014.
88 Kwon, O.-Y., Na, H.-J., Kim, H.-J., Lee, D.-W., Nam, S.-M.: Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett., 7, 261, (2012), doi: 10.1186/1556-276X-7-261.
89 Yang, G.-J., Li, C.-J., Fan, S.-Q., Wang, Y.-Y., Li, C.-X.: Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating, J. Therm. Spray Techn., 16, 873 – 880, (2007), doi: 10.1007/s11666-007-9109-5.
90 Kim, H.-J., Kwon, O.-Y., Jang, C.-I., Kim, T.K., Oh, J.R., Yoon, Y.J., Kim, J.-H., Nam, S.-M., Koh, J.-H.: Room-temperature growth of ni-zn-cu ferrite/PTFE composite thick films on PET via aerosol deposition, Electron. Mater. Lett., 9, 805 – 807, (2013), doi: 10.1007/s13391-013-6016-4.
91 Kim, H.-J., Nam, S.-M.: High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition, Nanoscale Res. Lett., 7, 92, (2012), doi: 10.1186/1556-276X-7-92.
92 Choi, J.-J., Oh, S.-H., Noh, H.-S., Kim, H.-R., Son, J.-W., Park, D.-S., Choi, J.-H., Ryu, J., Hahn, B.-D., Yoon, W.-H.; et al.: Low temperature fabrication of nano-structured porous LSM-YSZ composite cathode film by aerosol deposition, J. Alloys Compd., 509, 2627 – 2630, (2011), doi: 10.1016/j.jallcom.2010.11.169.
93 Ryu, J., Hahn, B.-D., Choi, J.-J., Yoon, W.-H., Lee, B.-K., Choi, J.H., Park, D.-S.: Porous photocatalytic TiO2 thin films by aerosol deposition, J. Am. Ceram. Soc., 93, 55 – 58, (2010), doi: 10.1111/j.1551-2916.2009.03391.x.
94 Hyung-Jun, K., Yoon-Hyun, K., Song-Min, N., Young, J.Y., Jong-Hee, K.: Calculation of Al2O3 contents in Al2O3-PTFE composite thick films fabricated by using the aerosol deposition, J. Korean Phys. Soc., 57, 1086, (2010), doi: 10.3938/jkps.57.1086.
95 Cho, S.H., Yoon, Y.J., Kim, H.T., Kim, J., Kim, H.-J., Nam, S.M., Baik, H.K., Kim, J.-H.: Growth of Al2O3-PTFE composite film at room temperature by aerosol deposition method, Ceram. Int., 38, 131 – 134, (2012), doi: 10.1016/j.ceramint.2011.04.066.
96 Kim, H.-J., Nam, S.-M., Koh, J.-H.: Fe-Si-Cr/PTFE Magnetic Composite Thick Films on Polyethylene Terephthalate Sheets for Near Field Communications by Aerosol Deposition, J. Nanosci. Nanotechn., 14, 7915 – 7918, (2014), doi: 10.1166/jnn.2014.9417.
97 Kim, H.J., Kim, Y.H., Lee, J.W., Nam, S.M., Yoon, Y.J., Kim, J.H.: Residual stress relief in Al2O3-Poly-Tetra-Fluoro-ethylene hybrid thick films for integrated substrates using aerosol deposition, J. Nanoelectron. Optoe., 7, 287 – 291, (2012), doi: 10.1166/jno.2012.1305.
98 Choi, J.-J., Ryu, J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Choi, J.-H., Park, D.-S.: Oxidation behavior of ferritic steel alloy coated with LSM-YSZ composite ceramics by aerosol deposition, J. Alloys Compd., 492, 488 – 495, (2010), doi: 10.1016/j.jallcom.2009.11.146.
99 Carter, C.B., Norton, M.G.: Ceramic materials: Science and engineering. Springer, New York, London, (2007).
100 Shackelford, J.F., Alexander, W.: CRC materials science and engineering handbook. 3rd edition. CRC Press, Boca Raton, FL, (2001).
101 Seto, N., Endo, K., Sakamoto, N., Hirose, S., Akedo, J.: Hard α-Al2O3 film coating on industrial roller using aerosol deposition method, J. Therm. Spray Techn., 23, 1373 – 1381, (2014), doi: 10.1007/s11666-014-0135-9.
102 Lebedev, M., Akedo, J., Ito, T.: Substrate heating effects on hardness of an a-Al2O3 thick film formed by aerosol deposition method, J. Cryst. Growth, 275, e1301, (2005), doi: 10.1016/j.jcrysgro.2004.11.109.
103 Hatono, H., Ito, T., Iwata, K., Akedo, J.: Multilayer construction with various ceramic films for electronic devices fabricated by aerosol deposition, Int. J. Appl. Ceram. Tec., 3, 419 – 427, (2006), doi: 10.1111/j.1744-7402.2006.02109.x.
104 Lee, W.-H., Kim, H.-J., Lee, D.-W., Jeong, M.-G., Lim, D.-S., Nam, S.-M.: Al2O3-nanodiamond composite coatings with high durability and hydrophobicity prepared by aerosol deposition, Surf. Coat. Tech., 206, 4679 – 4684, (2012), doi: 10.1016/j.surfcoat.2012.05.052.
105 Sakamaki, R., Hoshina, T., Kakemoto, H., Yasuda, K., Takeda, H., Akedo, J., Tsurumi, T.: Heat-cycle endurance and in-plane thermal expansion of Al2O3/Al substrates formed by aerosol deposition method, J. Ceram. Soc. Jpn., 116, 1299 – 1303, (2008), doi: 10.2109/jcersj2.116.1299.
106 Cho, H.M., Kim, H.J.: Metal-core printed circuit board with alumina layer by aerosol deposition process, IEEE Electron Device Lett., 29, 991 – 993, (2008), doi: 10.1109/LED.2008.2001633.
107 Sato, Y., Uemichi, Y., Nishikawa, K., Yoshikado, S.: Fabrication of Al2O3 films using aerosol deposition method and their characterization, IOP Conf. Ser.: Mater. Sci. Eng., 18, 092056, (2011), doi: 10.1088/1757-899X/18/9/092056.
108 Nam, S.-M.: Aerosol deposition for electronic device application. In: 4th Tsukuba International Coatings Symposium, Frontiers of Coatings Technology: Innovative Processes and Applications, 2010, 9 – 10.
109 Lee, D.-W., Kim, H.-J., Nam, S.-M.: Effects of starting powder on the growth of Al2O3 films on cu substrates using the aerosol deposition method, J. Korean Phys. Soc., 57, 1115 – 1121, (2010), doi: 10.3938/jkps.57.1115.
110 Momotani, M., Mori, N., Nam, S.M., Kakemoto, H., Wada, S., Tsurumi, T., Akedo, J.: Fabrication of microstrip band pass filters in GHz region by aerosol deposition process, Key Eng. Mater., 301, 117 – 120, (2006), doi: 10.4028/www.scientific.net/KEM.301.117.
111 Lee, J.-W., Koh, J.-H.: Microwave band-pass filter with aerosol-deposited Al2O3-polytetrafluoroethylene composite thick films, J. Nanosci. Nanotechno., 15, 2300 – 2304, (2015), doi: 10.1166/jnn.2015.10254.
112 Heywang, W., Lubitz, K., Wersing, W.: Piezoelectricity: Evolution and future of a technology. Springer, Berlin, (2008).
113 Akedo, J.: Microstructure of ceramic thick film formed by aerosol deposition and its applications to microactuator, Integr. Ferroelectr., 80, 55 – 65, (2006), doi: 10.1080/10584580600656221.
114 Liao, W.-H., Yeh, S.P., Wang, L.T., Wang, Y.J., Lin, S.C., Shih, Y.S., Wu, W.J.: Recent progress on micro-piezoelectric energy harvesters fabricated with aerosol deposition method and the interfacing circuits. In: SPIE Smart structures and materials + nondestructive evaluation and health monitoring: SPIE, San Diego, California, 2014, 90570M,.
115 Akedo, J., Lebedev, M.: Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52,Ti0.48)O3 thick films formed by aerosol deposition method, J. Cryst. Growth, 235, 415 – 420, (2002), doi: 10.1016/S0022-0248(01)01925-X.
116 Kawakami, Y., Aisawa, S., Akedo, J.: Annealing effect on 0.5Pb(Ni1/3Nb2/3)O3-0.5Pb(Zr0.3Ti0.7)O3 thick film deposited by aerosol deposition method, Jpn. J. Appl. Phys., 44, 6934 – 6937, (2005), doi: 10.1143/JJAP.44.6934.
117 Baba, S., Akedo, J.: Damage-free and short annealing of Pb(Zr,Ti)O3 thick films directly deposited on stainless steel sheet by aerosol deposition with CO2 laser radiation, J. Am. Ceram. Soc., 88, 1407 – 1410, (2005), doi: 10.1111/j.1551-2916.2005.00269.x.
118 Nakada, M., Ohashi, K., Akedo, J.: Electro-optic properties of Pb(Zr1- xTix)O3 (X =0, 0.3, 0.6) films prepared by aerosol deposition, Jpn. J. Appl. Phys., 44, L1088, (2005), doi: 10.1143/JJAP.44.L1088.
119 Lebedev, M., Akedo, J.: What thickness of the piezoelectric layer with high breakdown voltage is required for the Microactuator?, Jpn. J. Appl. Phys., 41, 3344 – 3347, (2002), doi: 10.1143/JJAP.41.3344.
120 Miyoshi, T.: Preparation of full-dense Pb(Zr,Ti)O3 ceramics by aerosol deposition, J. Am. Ceram. Soc., 91, 2098 – 2104, (2008), doi: 10.1111/j.1551-2916.2008.02422.x.
121 Lebedev, M., Akedo, J., Akiyama, Y.: Actuation properties of lead zirconate titanate thick films structured on si membrane by the aerosol deposition method, Jpn. J. Appl. Phys., 39, 5600 – 5603, (2000), doi: 10.1143/JJAP.39.5600.
122 Park, J.-H., Akedo, J.: Development of novel nanocomposite films by aerosol deposition. In: 4th Tsukuba International Coatings Symposium, Frontiers of Coatings Technology: Innovative Processes and Applications, 2010,19 – 20.
123 Hahn, B.-D., Park, D.-S., Choi, J.-J., Yoon, W.-H., Ryu, J., Kim, D.-Y.: Effects of Zr/Ti ratio and post-annealing temperature on the electrical properties of lead zirconate titanate (PZT) thick films fabricated by aerosol deposition, J. Mater. Res., 23, 226 – 235, (2008), doi: 10.1557/JMR.2008.0021.
124 Miyoshi, T., Funakubo, H.: Effect of grain size on mechanical properties of full-dense Pb(Zr,Ti)O3 ceramics, Jpn. J. Appl. Phys., 49, 09MD13, (2010), doi: 10.1143/JJAP.49.09MD13.
125 Kawakami, Y., Yoshikawa, H., Komagata, K., Akedo, J.: Powder preparation for 0.5 Pb(Ni1/3Nb2/3)O3-0.15 PbZrO3-0.35PbTiO3 thick films by the aerosol deposition method, J. Cryst. Growth, 275, e1295, (2005), doi: 10.1016/j.jcrysgro.2004.11.103.
126 Jong-Jin Choi, Hahn, B.-D., Woon-Ha Yoon, Dong-Soo Park, Jungho Ryu: Highly dense and crack free 50-μm-Thick PZN-PZT films by aerosol deposition method, 460 – 463), doi: 10.1109/ISAF.2007.4393298.
127 Miyoshi, T.: Evaluation of Pb(Zr,Ti)O3 ceramics prepared by aerosol deposition, Jpn. J. Appl. Phys., 46, 7018 – 7023, (2007), doi: 10.1143/JJAP.46.7018.
128 Nakada, M., Ohashi, K., Akedo, J.: Dielectric characteristics of ferroelectric films prepared by aerosol deposition in THz range, Jpn. J. Appl. Phys., 44, 6918 – 6922, (2005), doi: 10.1143/JJAP.44.6918.
129 Baba, S., Akedo, J., Tsukamoto, M., Abe, N.: Effect of carrier gas species on ferroelectric properties of PZT/Stainless-steel fabricated by CO2 laser-assisted aerosol deposition, J. Am. Ceram. Soc., 89, 1736 – 1738, (2006), doi: 10.1111/j.1551-2916.2006.00943.x.
130 Baba, S., Tsuda, H., Akedo, J.: Thickness dependence of electrical properties of PZT films deposited on metal substrates by laser-assisted aerosol deposition, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 55, 1009 – 1016, (2008), doi: 10.1109/TUFFC.2008.747.
131 Akedo, J., Lebedev, M.: Influence of carrier gas conditions on electrical and optical properties of Pb(Zr, Ti)O3 thin films prepared by aerosol deposition method, Jpn. J. Appl. Phys., 40, 5528 – 5532, (2001), doi: 10.1143/JJAP.40.5528.
132 Han, G., Ryu, J., Yoon, W.-H., Choi, J.-J., Hahn, B.-D., Park, D.-S.: Effect of film thickness on the piezoelectric properties of lead zirconate titanate thick films fabricated by aerosol deposition, J. Am. Ceram. Soc., 94, 1509 – 1513, (2011), doi: 10.1111/j.1551-2916.2010.04276.x.
133 Choi, J.-J., Jang, J.-H., Hahn, B.-D., Park, D.-S., Yoon, W.-H., Ryu, J., Park, C.: Preparation of highly dense PZN-PZT thick films by the aerosol deposition method using excess-pbO powder, J. Am. Ceram. Soc., 90, 3389 – 3394, (2007), doi: 10.1111/j.1551-2916.2007.01901.x.
134 Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., 61, 1267 – 1324, (1998), doi: 10.1088/0034-4885/61/9/002.
135 Akedo, J., Lebedev, M., Baba, S.: Aerosol deposition method for preparation of lead zirconate titanate thick layer at low temperature – Improvement of electrical properties by irradiation of fast atom beam and Plasma –, Jpn. J. Appl. Phys., 42, 5931 – 5935, (2003), doi: 10.1143/JJAP.42.5931.
136 Tsuda, H., Nakada, M., Akedo, J., Ohashi, K.: Optical properties of Pb(Zr,Ti)O3 films prepared by aerosol deposition, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 55, 975 – 979, (2008), doi: 10.1109/TUFFC.2008.742.
137 Iwanami, M., Nakada, M., Tsuda, H., Ohashi, K., Akedo, J.: Ultra small electro-optic field probe fabricated by aerosol deposition, IEICE Electron. Express, 4, 26 – 32, (2007), doi: 10.1587/elex.4.26.
138 Nakada, M., Shimizu, T., Miyazaki, H., Tsuda, H., Akedo, J., Ohashi, K.: Lanthanum-modified lead zirconate titanate electro-optic modulators fabricated using aerosol deposition for LSI interconnects, Jpn. J. Appl. Phys., 48, 09KA06, (2009), doi: 10.1143/JJAP.48.09KA06.
139 Ohashi, K., Nishi, K., Shimizu, T., Nakada, M., Fujikata, J., Ushida, J., Torii, S., Nose, K., Mizuno, M., Yukawa, H.; et al.: On-chip optical interconnect, A silicon chip able to optically-perform desired signal interconnections has been bonded to a large-scale integrated silicon chip to provide cost-effective reduction of required interconnection power, Proc. IEEE, 97, 1186 – 1198, (2009), doi: 10.1109/JPROC.2009.2020331.
140 Nakada, M., Ohashi, K., Lebedev, M., Akedo, J.: Electro-optical properties of (Pb, La)(Zr, Ti)O3 films prepared by aerosol deposition method, Jpn. J. Appl. Phys., 42, 5960 – 5962, (2003), doi: 10.1143/JJAP.42.5960.
141 Shimizu, T., Nakada, M., Tsuda, H., Miyazaki, H., Akedo, J., Ohashi, K.: Gigahertz-rate optical modulation on mach-zehnder PLZT electro-optic modulators formed on silicon substrates by aerosol deposition, IEICE Electron. Express, 6, 1669 – 1675, (2009), doi: 10.1587/elex.6.1669.
142 Ryu, J., Choi, J.-J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Choi, J.H., Park, D.-S.: Pb(Zr,Ti)O3-Pb(Mn1/3Nb2/3)O3 piezoelectric thick films by aerosol deposition, Mater. Sci. Eng., B, 170, 67 – 70, (2010), doi: 10.1016/j.mseb.2010.02.028.
143 Oh, N.-K., Han, G., Yoon, W.-H., Choi, J.-J., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Choi, J.H., Park, D.-S., Kim, J.-J.; et al.: 2 – 2 structured magnetoelectric composites by aerosol deposition, J. Am. Ceram. Soc., 95, 855 – 858, (2012), doi: 10.1111/j.1551-2916.2011.05050.x.
144 Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chang, P.-Z., Lee, C.K.: Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film, J. Micromech. Microeng., 19, 065014, (2009), doi: 10.1088/0960-1317/19/6/065014.
145 Miyoshi, T.: Preparation of multilayer piezoelectric device by aerosol deposition using a novel detachment method, J. Ceram. Soc. Jpn., 117, 899 – 903, (2009), doi: 10.2109/jcersj2.117.899.
146 Park, J.-H., Akedo, J., Lebedev, M., Sato, H.: Optical scanning devices based on PZT thick films formed by aerosol deposition method, Brisbane, Australia, January 03, 2006, Proc SPIE 6037, (2006), doi: 10.1117/12.638489
147 Asai, N., Matsuda, R., Watanabe, M., Takayama, H., Yamada, S., Mase, A., Shikida, M., Sato, K., Lebedev, M., Akedo, J.: A novel high resolution optical scanner actuated by aerosol deposited PZT films,Kyoto, japan, january 19 – 23, 2003, Proc. IEEE, (2003), doi: 10.1109/MEMSYS.2003.1189732.
148 Akedo, J., Lebedev, M.: Aerosol deposition for fabrication of high speed optical micro-scanner, Advances in Dielectric Materials and Electronic Devices, 174, 99 – 106, (2006), doi: 10.1002/9781118408162.ch11.
149 Park, J.-H., Akedo, J., Lebedev, M., Sato, H., Chiao, J.-C., Dzurak, A.S., Jagadish, C., Thiel, D.V.: Optical scanning devices based on PZT thick films formed by aerosol deposition method. In: Proc. SPIE 6037, Device and Process Technologies for Microelectronics, MEMS, and Photonics IV, Brisbane, Australia, 2006, 60371S,.
150 Park, J.-H., Akedo, J.: Fabrication and scanning-angle temperature dependence of metal-based, optical resonant scanners with PZT actuation, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 55, 942 – 945, (2008), doi: 10.1109/TUFFC.2008.736.
151 Kim, H.-K., Lee, S.-H., Kim, S.I., Woo Lee, C., Rag Yoon, J., Lee, S.-G., Lee, Y.-H.: Dielectric strength of voidless BaTiO3 films with nano-scale grains fabricated by aerosol deposition, J. Appl. Phys., 115, 014101, (2014), doi: 10.1063/1.4851675.
152 Oh, J.-M., Nam, S.-M.: Thickness limit of BaTiO3 thin film capacitors grown on SUS substrates using aerosol deposition method, Thin Solid Films, 518, 6531 – 6536, (2010), doi: 10.1016/j.tsf.2010.03.159.
153 Oh, J.-M., Nam, S.-M.: Possibility of BaTiO3 thin films prepared on cu substrates for embedded decoupling capacitors by an aerosol deposition method, J. Ceram. Process. Res., 10, 674 – 678, (2009).
154 Imanaka, Y., Akedo, J.: Embedded capacitor technology using aerosol deposition, Int. J. Appl. Ceram. Tec., 7, E23 – E32, (2010), doi: 10.1111/j.1744-7402.2009.02359.x.
155 Imanaka, Y., Hayashi, N., Takenouchi, M., Akedo, J.: Aerosol deposition for post-LTCC, J. Eur. Ceram. Soc., 27, 2789 – 2795, (2007), doi: 10.1016/j.jeurceramsoc.2006.11.055.
156 Imanaka, Y., Amada, H., Kumasaka, F.: Dielectric and insulating properties of embedded capacitor for flexible electronics prepared by aerosol-type nanoparticle deposition, Jpn. J. Appl. Phys., 52, 05DA02, (2013), doi: 10.7567/JJAP.52.05DA02.
157 Imanaka, Y.: Aerosol deposition technology for microelectronic packaging. In: 4th Tsukuba International Coatings Symposium, Frontiers of Coatings Technology: Innovative Processes and Applications, 2010, 13 – 14.
158 Wang, C., Sung, H.K., Kim, N.Y.: Aerosol deposition-based micropatterning of barium titanate via sulphur hexafluoride inductively coupled plasma etching, Vacuum, 114, 49 – 53, (2015), doi: 10.1016/j.vacuum.2014.12.028.
159 Hoshina, T., Furuta, T., Kigoshi, Y., Hatta, S., Horiuchi, N., Takeda, H., Tsurumi, T.: Size effect of nanograined BaTiO3 ceramics fabricated by aerosol deposition method, Jpn. J. Appl. Phys., 49, 09MC02, (2010), doi: 10.1143/JJAP.49.09MC02.
160 Arlt, G., Hennings, D., With, G. de: Dielectric properties of fine-grained barium titanate ceramics, J. Appl. Phys., 58, 1619 – 1625, (1985), doi: 10.1063/1.336051.
161 Furuta, T., Hatta, S., Kigoshi, Y., Hoshina, T., Takeda, H., Tsurumi, T.: Dielectric properties of nanograined BaTiO3 ceramics fabricated by aerosol deposition method, Key Eng. Mater., 485, 183 – 186, (2011), doi: 10.4028/www.scientific.net/KEM.485.183.
162 Oh, J.-M., Kim, H.-J., Nam, S.-M.: Characterization of leakage current mechanisms for Aerosol-deposited BaTiO3 thin films at room temperature, J. Korean Phys. Soc., 57, 1096, (2010), doi: 10.3938/jkps.57.1096.
163 Kim, H.-K., Oh, J.-M., Kim, S.I., Kim, H.-J., Lee, C., Nam, S.-M.: Relation between electrical properties of aerosol-deposited BaTiO3 thin films and their mechanical hardness measured by nano-indentation, Nanoscale Res. Lett., 7, 264, (2012), doi: 10.1186/1556-276X-7-264.
164 Oh, J., Kim, N., Choi, S., Nam, S.: Thickness dependence of dielectric properties in BaTiO3 films fabricated by aerosol deposition method, Mater. Sci. Eng., B, 161, 80 – 84, (2009), doi: 10.1016/j.mseb.2009.01.028.
165 Jong-Min, O., Song-Min, N.: Causes arising high leakage currents in thin BaTiO3 films prepared by aerosol deposition method, J. Korean Phys. Soc., 56, 448, (2010), doi: 10.3938/jkps.56.448.
166 Hitosugi, T., Yamada, N., Nakao, S., Hirose, Y., Hasegawa, T.: Properties of TiO2-based transparent conducting oxides, Phys. Status Solidi A, 207, 1529 – 1537, (2010), doi: 10.1002/pssa.200983774.
167 Madelung, O., Rössler, U., Schulz, M.: Semiconductors. Springer, Berlin, (2006).
168 O'Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737 – 740, (1991), doi: 10.1038/353737a0.
169 Beydoun, D., Amal, R., Low, G.K.-C., McEvoy, S.: Novel Photocatalyst: titania-coated Magnetite. activity and photodissolution, J. Phys. Chem. B, 104, 4387 – 4396, (2000), doi: 10.1021/jp992088c.
170 Kim, D.-Y., Park, J.-J., Lee, J.-G., Lee, M.-W., Kim, H.-Y., Oh, J.-H., Seong, T.-Y., Kim, D., James, S.C., van Hest, M.F.A.M.; et al.: Tuning hydrophobicity with honeycomb surface structure and hydrophilicity with CF4 plasma etching for aerosol-deposited titania films, J. Am. Ceram. Soc., 95, 3955 – 3961, (2012), doi: 10.1111/jace.12021.
171 Park, J.-J., Kim, D.-Y., Lee, J.-G., Kim, D., Oh, J.-H., Seong, T.-Y., van Hest, M.F., Yoon, S.S.: Superhydrophilic transparent titania films by supersonic aerosol deposition, J. Am. Ceram. Soc., 96, 1596 – 1601, (2013), doi: 10.1111/jace.12164.
172 Park, J.-J., Kim, D.-Y., Latthe, S.S., Lee, J.-G., Swihart, M.T., Yoon, S.S.: Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition, ACS Appl. Mater. Interfaces, 5, 6155 – 6160, (2013), doi: 10.1021/am401083y.
173 Sahner, K., Kaspar, M., Moos, R.: Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films, Sens. Actuators, B, 139, 394 – 399, (2009), doi: 10.1016/j.snb.2009.03.011.
174 Tsukamoto, M., Abe, N., Soga, Y., Yoshida, M., Nakano, H., Fujita, M., Akedo, J.: Control of electrical resistance of TiO2 films by short-pulse laser irradiation, Appl. Phys. A: Mater. Sci. Process., 93, 193 – 196, (2008), doi: 10.1007/s00339-008-4713-x.
175 Shinonaga, T.: Control of electrical resistance and temperature of titanium dioxide film by local heating with CW fiber laser, J. Laser Micro/Nanoeng., 9, 204 – 208, (2014), doi: 10.2961/jlmn.2014.03.0004.
176 Kim, J.O., Choi, W.Y., Choi, B.K., Jeong, J.T.: Fabrication of photocatalytic TiO2 thin film using innovative aerosol deposition method, Mater. Sci. Forum, 510 – 511, 1 – 4, (2006), doi: 10.4028/www.scientific.net/MSF.510-511.1.
177 Cho, S.H., Yoon, Y.J.: Multi-layer TiO2 films prepared by aerosol deposition method for dye-sensitized solar cells, Thin Solid Films, 547, 91 – 94, (2013), doi: 10.1016/j.tsf.2013.04.107.
178 Heo, J., Sudhagar, P., Park, H., Cho, W., Kang, Y.S., Lee, C.: Room temperature synthesis of highly compact TiO2 coatings by vacuum kinetic spraying to serve as a blocking layer in polymer electrolyte-based dye-sensitized solar cells, J. Therm. Spray Techn., 24, 328 – 337, (2015), doi: 10.1007/s11666-014-0204-0.
179 Ryu, H.S., Park, D.-S., Hong, S.-H.: Improved corrosion protection of AZ31 magnesium alloy through plasma electrolytic oxidation and aerosol deposition duplex treatment, Surf. Coat. Techn., 219, 82 – 87, (2013), doi: 10.1016/j.surfcoat.2013.01.008.
180 Park, J.-J., Kim, D.-Y., Lee, J.-G., Cha, Y.-H., Swihart, M.T., Yoon, S.: Supersonic aerosol-deposited TiO2 photoelectrodes for photoelectrochemical solar water splitting, RSC Adv., 4, 8661 – 8670, (2014), doi: 10.1039/C3RA47998F.
181 Choi, J.-J., Ryu, J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Choi, J.-H., Park, D.-S.: Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition, J. Am. Ceram. Soc., (2010), doi: 10.1111/j.1551-2916.2010.03646.x.
182 Huang, J.-J., Fu, Y.-P., Wang, J.-Y., Cheng, Y.-N., Lee, S., Hsu, J.-C.: Characterization of fe-cr alloy metallic interconnects coated with LSMO using the aerosol deposition process, Mater. Res. Bull., 51, 63 – 68, (2013), doi: 10.1016/j.materresbull.2013.11.058.
183 Choi, J.-J., Lee, J.-H., Park, D.-S., Hahn, B.-D., Yoon, W.-H., Lin, H.-T.: Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process, J. Am. Ceram. Soc., 90, 1926 – 1929, (2007), doi: 10.1111/j.1551-2916.2007.01641.x.
184 Choi, J.-J., Park, D.-S., Hahn, B.-D., Ryu, J., Yoon, W.-H.: Oxidation behavior of ferritic steel alloy coated with highly dense conducting ceramics by aerosol deposition, J. Am. Ceram. Soc., 91, 2601 – 2606, (2008), doi: 10.1111/j.1551-2916.2008.02506.x.
185 Choi, J.-J., Ryu, J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Park, D.-S.: Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation, J. Mater. Sci., 44, 843 – 848, (2009), doi: 10.1007/s10853-008-3132-x.
186 Jung, J.-H., Hahn, B.-D., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ryu, J., Kim, J.-W., Ahn, C.-W., Song, K.-M.: Halogen plasma erosion resistance of rare earth oxide films deposited on plasma sprayed alumina coating by aerosol deposition, J. Eur. Ceram. Soc., 32, 2451 – 2457, (2012), doi: 10.1016/j.jeurceramsoc.2012.02.019.
187 Ryu, H.S., Lim, T.S., Ryu, J., Hong, S.-H.: Corrosion protection performance of YSZ coating on AA7075 aluminum alloy prepared by aerosol deposition, J. Electrochem. Soc., 160, C42, (2012), doi: 10.1149/2.038302jes.
188 Ryu, H.S., Ryu, J., Park, D.-S., Hong, S.-H.: Electrochemical corrosion properties of nanostructured YSZ coated AZ31 magnesium alloy prepared by aerosol deposition, J. Electrochem. Soc., 158, C23, (2011), doi: 10.1149/1.3525271.
189 Hahn, B.-D., Park, D.-S., Choi, J.-J., Ryu, J., Yoon, W.-H., Lee, B.-K., Kim, H.-E.: Effect of the HA/β-TCP Ratio on the Biological Performance of Calcium Phosphate Ceramic Coatings Fabricated by a Room-Temperature Powder Spray in Vacuum, J. Am. Ceram. Soc., 92, 793 – 799, (2009), doi: 10.1111/j.1551-2916.2009.02949.x.
190 Kim, S.W., Seo, D.S., Lee, J.K.: Fabrication of xenogeneic bone-derived hydroxyapatite thin film by aerosol deposition method, Appl. Surf. Sci., 255, 388 – 390, (2008), doi: 10.1016/j.apsusc.2008.06.084.
191 Hahn, B.-D., Park, D.-S., Choi, J.-J., Ryu, J., Yoon, W.-H., Kim, K.-H., Park, C., Kim, H.-E.: Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition, J. Am. Ceram. Soc., 92, 683 – 687, (2009), doi: 10.1111/j.1551-2916.2008.02876.x.
192 Hahn, B.-D., Lee, J.-M., Park, D.-S., Choi, J.-J., Ryu, J., Yoon, W.-H., Lee, B.-K., Shin, D.-S., Kim, H.-E.: Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films, 518, 2194 – 2199, (2010), doi: 10.1016/j.tsf.2009.09.024.
193 Hahn, B.-D., Cho, Y.-L., Park, D.-S., Choi, J.-J., Ryu, J., Kim, J.-W., Ahn, C.-W., Park, C., Kim, H.-E., Kim, S.-G.: Effect of fluorine addition on the biological performance of hydroxyapatite coatings on ti by aerosol deposition, J. Biomater. Appl., 27, 587 – 594, (2012), doi: 10.1177/0885328211415723.
194 Kitajima, A., Tsukamoto, M., Akedo, J.: Hydroxyapatite film coated on poly-L-lactic acid by aerosol deposition method, J. Ceram. Soc. Jpn., 118, 417 – 420, (2010), doi: 10.2109/jcersj2.118.417.
195 Seo, D.S., Chae, H.C., Lee, J.K.: Fabrication and microstructure of hydroxyapatite coatings on zirconia by room temperature spray process, J. Nanosci. Nanotechn., 15, 6039 – 6043, (2015), doi: 10.1166/jnn.2015.10440.
196 Sugimoto, S., Maeda, T., Kobayashi, R., Akedo, J., Lebedev, M., Inomata, K.: Magnetic properties of sm-fe-N thick film magnets prepared by the aerosol deposition method, IEEE Trans. Magn., 39, 2986 – 2988, (2003), doi: 10.1109/TMAG.2003.816715.
197 Maki, T., Sugimoto, S., Kagotani, T., Inomata, K., Akedo, J.: Microstructure and magnetic properties of aerosol-deposited sm-fe-N thick films, Electr. Eng. Jpn., 158, 8 – 13, (2007), doi: 10.1002/eej.20214.
198 Maki, T., Sugimoto, S., Kagotani, T., Inomata, K., Akedo, J.: Microstructures and magnetic properties of sm-fe-N thick films produced by the aerosol deposition method, Mater. Trans., 45, 369 – 372, (2004)2004), doi: 10.2320/matertrans.45.369.
199 Sugimoto, S., Akedo, J., Lebedev, M., Inomata, K.: Magnetic properties and microstructures of the aerosol-deposited permanent magnet films, J. Magn. Magn. Mater., 272 – 276, E1881, (2004), doi: 10.1016/j.jmmm.2003.12.607.
200 Sugimoto, S., Maki, T., Kagotani, T., Akedo, J., Inomata, K.: Effect of applied field during aerosol deposition on the anisotropy of Sm-Fe-N thick films, J. Magn. Magn. Mater., 290 – 291, 1202 – 1205, (2005), doi: 10.1016/j.jmmm.2004.11.385.
201 Maki, T., Sugimoto, S., Kagotani, T., Inomata, K., Akedo, J.: Effect of applied magnetic field on magnetic properties of sm-fe-N films prepared by aerosol deposition method, Mater. Trans., 45, 2626 – 2629, (2004), doi: 10.2320/matertrans.45.2626.
202 Lebedev, M., Akedo, J., Iwata, A., Sugimoto, S., Inomata, K.: NiZnCu ferrite thick film with nano scale crystallites formed by the aerosol deposition method, J. Am. Ceram. Soc., 87, 1621 – 1624, (2004), doi: 10.1111/j.1551-2916.2004.01621.x.
203 Kagotani, T., Kobayashi, R., Sugimoto, S., Inomata, K., Okayama, K., Akedo, J.: Magnetic properties and microwave characteristics of Ni-Zn-Cu ferrite film fabricated by aerosol deposition method, J. Magn. Magn. Mater., 290 – 291, 1442 – 1445, (2005), doi: 10.1016/j.jmmm.2004.11.543.
204 Sugimoto, S., Haga, K., Nakata, M., Kagotani, T., Inomata, K., Akedo, J.: Magnetic properties of Fe/(NiZnCu)Fe2O4 composite films prepared by aerosol deposition method, IEEE Trans. Magn., 41, 3460 – 3462, (2005), doi: 10.1109/TMAG.2005.854880.
205 Kato, Y., Sugimoto, S., Akedo, J.: Magnetic properties and electromagnetic wave suppression properties of Fe-Ferrite films prepared by aerosol deposition method, Jpn. J. Appl. Phys., 47, 2127 – 2131, (2008), doi: 10.1143/JJAP.47.2127.
206 Moos, R., Sahner, K., Fleischer, M., Guth, U., Barsan, N., Weimar, U.: Solid state gas sensor research in germany - a status report, Sensors, 9, 4323 – 4365, (2009), doi: 10.3390/s90604323.
207 Moos, R.: Catalysts as sensors-a promising novel approach in automotive exhaust gas aftertreatment, Sensors, 10, 6773 – 6787, (2010), doi: 10.3390/s100706773.
208 Fraden, J.: Handbook of modern sensors: Physics, designs, and applications, 4th edition. Springer, New York, 2010.
209 Bektas, M., Hanft, D., Schönauer-Kamin, D., Stöcker, T., Hagen, G., Moos, R.: Aerosol-deposited BaFe0.7Ta0.3O3-δ for nitrogen monoxide and temperature-independent oxygen sensing, J. Sens. Sens. Syst., 3, 223 – 229, (2014), doi: 10.5194/jsss-3-223-2014.
210 Hsiao, C.-C., Luo, L.-S.: A rapid process for fabricating gas sensors, Sensors, 14, 12219 – 12232, (2014), doi: 10.3390/s140712219.
211 Feteira, A.: Negative temperature coefficient resistance (NTCR) ceramic Thermistors: an industrial perspective, J. Am. Ceram. Soc., 92, 967 – 983, (2009), doi: 10.1111/j.1551-2916.2009.02990.x.
212 Ryu, J., Park, D.-S., Schmidt, R.: In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films, J. Appl. Phys., 109, 113722, (2011), doi: 10.1063/1.3592300.
213 Ryu, J., Kim, K.-Y., Choi, J.-J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Park, D.-S., Park, C.: Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition, J. Am. Ceram. Soc., 92, 3084 – 3087, (2009), doi: 10.1111/j.1551-2916.2009.03300.x.
214 Ryu, J., Han, G., Lee, J.-P., Lim, Y.-S., Park, D.-S., Jeong, D.-Y.: Co and fe doping effect on negative temperature coefficient characteristics of nano-grained NiMn2O4 thick films fabricated by aerosol-deposition, J. Nanosci. Nanotechn., 13, 3422 – 3426, (2013), doi: 10.1166/jnn.2013.7232.
215 Hsiao, C.-C., Liu, S.-Y.: Multi-frequency band pyroelectric sensors, Sensors, 14, 22180 – 22198, (2014), doi: 10.3390/s141222180.
216 Kambale, R.C., Patil, D., Ryu, J., Chai, Y.S., Kim, K.H., Yoon, W.-H., Jeong, D.-Y., Park, D.-S., Kim, J.-W., Choi, J.-J.; et al.: Colossal magnetoelectric response of PZT thick films on ni substrates with a conductive LaNiO3 electrode, J. Phys. D: Appl. Phys., 46, 092002, (2013), doi: 10.1088/0022-3727/46/9/092002.
217 Jacobson, A.J.: Materials for solid oxide fuel cells †, Chem. Mater., 22, 660 – 674, (2010), doi: 10.1021/cm902640j.
218 Menzler, N.H., Tietz, F., Uhlenbruck, S., Buchkremer, H.P., Stöver, D.: Materials and manufacturing technologies for solid oxide fuel cells, J. Mater. Sci., 45, 3109 – 3135, (2010), doi: 10.1007/s10853-010-4279-9.
219 Bae, H., Choi, J., Kim, K.J., Park, D., Choi, G.M.: Low-temperature fabrication of protonic ceramic fuel cells with BaZr0.8Y0.2O3-δ electrolytes coated by aerosol deposition method, Int. J. Hydrogen Energ., 40, 2775 – 2784, (2015), doi: 10.1016/j.ijhydene.2014.12.046.
220 Choi, J.-J., Ryu, J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Yoon, W.-H., Park, D.-S.: Low temperature preparation and characterization of solid oxide fuel cells on FeCr-based alloy support by aerosol deposition, Int. J. Hydrogen Energ., 39, 12878 – 12883, (2014), doi: 10.1016/j.ijhydene.2014.06.070.
221 Choi, J.-J., Choi, J.-H., Ryu, J., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Yoon, W.-H., Park, D.-S.: Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO-YSZ, J. Eur. Ceram. Soc., 32, 3249 – 3254, (2012), doi: 10.1016/j.jeurceramsoc.2012.04.024.
222 Choi, J.-J., Cho, K.-S., Choi, J.-H., Ryu, J., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Yoon, W.-H., Yun, J., Park, D.-S.: Effects of annealing temperature on solid oxide fuel cells containing (La,Sr)(Ga,Mg,Co)O3-δ electrolyte prepared by aerosol deposition, Mater. Lett., 70, 44 – 47, (2012), doi: 10.1016/j.matlet.2011.11.103.
223 Wang, S.-F., Hsu, Y.-F., Wang, C.-H., Yeh, C.-T.: Solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte film deposited by novel aerosol deposition method, J. Power Sources, 196, 5064 – 5069, (2011), doi: 10.1016/j.jpowsour.2011.01.083.
224 Choi, J.-J., Choi, J.-H., Ryu, J., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Yoon, W.-H., Park, D.-S.: Low-temperature fabrication of nano-structured porous (La,Sr)(Co,Fe)O3-δ cathodes by aerosol deposition, J. Alloys Compd., 545, 186 – 189, (2012), doi: 10.1016/j.jallcom.2012.08.060.
225 Hayner, C.M., Zhao, X., Kung, H.H.: Materials for rechargeable lithium-ion batteries, Annual review of chemical and biomolecular engineering, 3, 445 – 471, (2012), doi: 10.1146/annurev-chembioeng-062011-081024.
226 Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review, Energ. Environ. Sci., 4, 3243, (2011), doi: 10.1039/c1ee01598b.
227 Popovici, D., Nagai, H., Fujishima, S., Akedo, J.: Introduction of Aerosol Deposition Technique in All-solid-state Li-ion Battery Research. In: 4th Tsukuba International Coatings Symposium, Frontiers of Coatings Technology: Innovative Processes and Applications, 2010, 25 – 26.
228 Goriparti, S., Miele, E., Angelis, F. de, Di Fabrizio, E., Proietti Zaccaria, R., Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257, 421 – 443, (2014), doi: 10.1016/j.jpowsour.2013.11.103.
229 Usui, H., Shibata, M., Nakai, K., Sakaguchi, H.: Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated si particles, J. Power Sources, 196, 2143 – 2148, (2011), doi: 10.1016/j.jpowsour.2010.10.013.
230 Usui, H., Nouno, K., Takemoto, Y., Nakada, K., Ishii, A., Sakaguchi, H.: Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites, J. Power Sources, 268, 848 – 852, (2014), doi: 10.1016/j.jpowsour.2014.06.105.
231 Usui, H., Uchida, N., Sakaguchi, H.: Influence of order in stepwise electroless deposition on anode properties of thick-film electrodes consisting of si particles coated with ni and cu, J. Power Sources, 196, 10244 – 10248, (2011), doi: 10.1016/j.jpowsour.2011.08.018.
232 Usui, H., Wasada, K., Shimizu, M., Sakaguchi, H.: TiO2/Si composites synthesized by sol-gel method and their improved electrode performance as Li-ion battery anodes, Electrochim. Acta, 111, 575 – 580, (2013), doi: 10.1016/j.electacta.2013.08.015.
233 Usui, H., Uchida, N., Sakaguchi, H.: Improved anode performance of Ni-P-coated si thick-film electrodes for li-ion battery, Electrochemistry, 80, 737 – 739, (2012), doi: 10.5796/electrochemistry.80.737.
234 Iida, T., Hirono, T., Shibamura, N., Sakaguchi, H.: Mg2Ge/Si composite electrodes prepared by gas-deposition as anodes for lithium rechargeable battery, Electrochemistry, 76, 644 – 648, (2008), doi: 10.5796/electrochemistry.76.644.
235 Usui, H., Kashiwa, Y., Iida, T., Sakaguchi, H.: Anode properties of Ru-coated si thick film electrodes prepared by gas-deposition, J. Power Sources, 195, 3649 – 3654, (2010), doi: 10.1016/j.jpowsour.2009.12.072.
236 Usui, H., Nishinami, H., Iida, T., Sakaguchi, H.: Anode properties of cu-coated si thick film electrodes prepared by electroless deposition and gas-deposition, Electrochemistry, 78, 329 – 331, (2010), doi: 10.5796/electrochemistry.78.329.
237 Usui, H., Kiri, Y., Sakaguchi, H.: Effect of carrier gas on anode performance of si thick-film electrodes prepared by gas-deposition method, Thin Solid Films, 520, 7006 – 7010, (2012), doi: 10.1016/j.tsf.2012.07.093.
238 Ahn, C.-W., Choi, J.-J., Ryu, J., Hahn, B.-D., Kim, J.-W., Yoon, W.-H., Choi, J.-H., Park, D.-S.: Microstructure and electrochemical properties of iron oxide film fabricated by aerosol deposition method for lithium ion battery, J. Power Sources, 275, 336 – 340, (2
Copyright
Göller Verlag GmbH