• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

The Effect of the Glass Phase on the Modulus of Rupture of High-Alumina Refractories

W. Yuan, Q. Zhu, C. Deng, H. Zhu

The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China

received February 24, 2015, received in revised form April 10, 2015, accepted May 26, 2015

Vol. 6, No. 3, Pages 215-220   DOI: 10.4416/JCST2015-00009

Abstract

Owing to their high refractoriness and slag resistance, high-alumina refractories are widely used in the lining of steelmaking furnaces, glass furnaces and cement rotary kilns in high-temperature industries. The impurities in the raw materials react to form the glass phase, which can melt into liquid at high temperatures. The modulus of rupture of refractories depends intensively on the content and composition of the glass phase. In this work, the cold and hot modulus of rupture for high-alumina bricks were investigated by means of fitting based on different theories. The effect of the glass phase on the modulus of rupture was analyzed by combining the phase composition, morphology of fracture surfaces and porosity for high-alumina refractories.

Download Full Article (PDF)

Keywords

Modulus of rupture, high-alumina refractories, glass phase

References

1 Li, N., Gu, H.Z., Zhao, H.Z.: Refractories, Metallurgical Industry Press, Beijing, 2010.

2 Budnikov, P.P.: The technology of ceramics and refractories. The M.I.T. Press, Massachusetts, 1964.

3 Routschka, G.: Pocket manual refractory materials: Basics, structures, properties, Vulkan-Verlag GmbH, Essen, 2004.

4 Tripathi, H.S., Ghosh, A., Halder, M.K., Mukherjee, B., Maiti, H.S.: Microstructure and properties of sintered mullite developed from indian bauxite, Bull. Mater. Sci., 35, [4], 639 – 643, (2012).

5 Abou-Sekkina, M.M., Abo-El-Enein, S.A., Khalil, N.M., Shalma, O.A.: Phase composition of bauxite-based refractory castables, Ceram. Int., 37, [1], 411 – 418, (2011).

6 Maldhure, A.V., Tripathi, H.S., Ghosh, A., Das, S.K.: Mullite-corundum composites from bauxite: effect of chemical composition, Trans. Indian Ceram. Soc., 73, [1], 31 – 36, (2014).

7 Aksel, C.: The effect of mullite on the mechanical properties and thermal shock behaviour of alumina-mullite refractory materials, Ceram. Int., 29, [2], 183 – 188, (2003).

8 Andrews, A., Mothle, T.S., Olubambi, P.A.: Strength behaviour of alumina based refractories after thermal cycling, J. Aust. Ceram. Soc., 49, [2], 47 – 51, (2013).

9 Xu, E.X., Zhong, X.C.: Bending stress-strain relationship of high alumina bricks at elevated temperatures, (in Chinese), Refract., 39, [4], 266 – 269, (2005).

10 Kopeykin, V.A., Poluboyarinov, D.N.: Phase composition of high-alumina ceramics, Refract., 1, [11 – 12], 452 – 457, (1960).

11 Serry, M.A., El-Maghraby, M.S., Salama, S.Z.: Shaped aluminosilicate refractories from egyptian raw materials, Am. Ceram. Soc. Bull., 85, [9], 9201 – 9206, (2006).

12 Amutha, R.D., Gnanam, F.D.: Sol-gel mullite as the self-bonding material for refractory applications. Ceram. Int., 26, [4], 347 – 350, (2000).

13 Dehghani, K., Allaire, C.: Changes in hot modulus of rupture with the characteristics of aluminosilicate refractories. In: Proceedings of 44th annual conference of metallurgists of CIM, Calgary, Canada, 2005, 247 – 258.

14 Xu, J.P.: The measurement of glass phase content in mullite, (in Chinese), Phys. Test. Chem. Anal. Part B: Chem. Anal., 43, [7], 605 – 606, (2007).

15 Mecholsky, J.J., Passoja, D.E., Feinberg-Ringel, K.S.: Quantitative analysis of brittle fracture surfaces using fractal geometry, J. Am. Ceram. Soc., 72, [1], 60 – 65, (1989).

16 Klug, F.J., Prochazka, S., Doremus, R.H.: Alumina-silica phase diagram in the mullite region, J. Am. Ceram. Soc., 70, [10], 750 – 759, (1987).

17 Shmitt-Fogelevich, S.P.: Change in phase composition of high-alumina refractories, Refract., 9, [11 – 12], 789 – 796, (1968).

18 Sharapova, V.V., Sereda, B.P., Boguslavskii, D.Y., Malyshev, I.P., Troyan, V.D., Troshenkov, N.A.: Prospects of the use of aluminosilicate refractories for aluminum electrolyzers. part 3. the role of the glass phase formed in the operation of aluminum electrolyzers, Refract. Ind. Ceram., 48, [6], 395 – 396, (2007).

19 Iqbal, Y., Lee, W.E.: Fired porcelain microstructures revisited, J. Am. Ceram. Soc., 82, [12], 3584 – 3590, (1999).

20 Carty, W.M.: Observations on the glass phase composition in porcelains, Ceram. Eng. Sci. Proc., 23, [2], 79 – 94, (2002).

21 Baspinar, M.S., Kara, F.: Optimization of the corrosion behavior of mullite refractories against alkali vapor via ZrSiO4 addition to the binder phase, Ceram-Silikáty, 53, [4], 242 – 249, (2009).

22 Sacks, M.D., Pask, J.A.: Sintering of mullite-containing materials: 1, effect of composition, J. Am. Ceram. Soc., 65, [2], 65 – 70, (1982).

23 Hamacek, J., Machacek, J., Kutzendorfer, J., Korsa, B., Fiala, J.: On the high temperature bending strength of castables, Ceram-Silikáty, 56, [3], 198 – 203, (2012).

24 Schnieder, J., Lynen, L., Traon, N., Tonnesen, T., Telle, R.: Crack formation and shape of fracture surface in tabular-alumina-based castables with addition of specific aggregates, J. Ceram. Sci. Tech., 5, [2], 131 – 136, (2014).

25 Bradt, R.C., Harmuth, H.: The fracture resistance of refractories, Refract. Worldforum, 3, [4], 129 – 135, (2011).

26 Terzic, A., Pavlovic, L., Milutinovic-Nikolic, A.: Influence of the phase composition of refractory materials on creep, Sci. Sinter., 38, [3], 255 – 263, (2006).

27 Xu, G.T., Diao, R.S., Du, H.G., Sun, X.W.: Study on erosion process of vanadium-titanium bearing slag with high alkali content on blast furnace lining, (in Chinese), Iron Steel Vanadium Titanium, 25, [2], 27 – 34, (2004).

28 Baran, G.R., Roques-Carmes, C., Wehbi, D., Degrange, M.: Fractal characteristics of fracture surfaces, J. Am. Ceram. Soc., 75, [10], 2687 – 2691, (1992).

29 Nagahama, H.: A fractal criterion for ductile and brittle fracture, J. Appl. Phys., 75, [6], 3220 – 3222, (1994).

30 Yuan, W.J., Zhu, Q.Y., Deng, C.J., Zhu, H.X.: Fractal analysis of fracture surfaces in refractories, China's Refract., 23, [1], 27 – 31, (2014).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH