Articles
All articles | Recent articles
Preparation of glass-ceramics in the MgO-Al2O3-SiO2 system via low-Temperature combustion synthesis technique
Y. He1, J. M. Guo2, G. W. Zhang1, X. L. Chen1, J. C. Zhang1, Z. L. Huang1, G. Y. Liu1, Q. Cai1
1 School of Science, Honghe University, Mengzi 661100, China
2 Joint Research Centre for International Cross-border Ethnic area Biomass Clean Utilization in Yunnan Province, Yunnan Minzu University, Kunming 650500, China
received January 13, 2015, received in revised form February 12, 2015, accepted March 10, 2015
Vol. 6, No. 3, Pages 201-206 DOI: 10.4416/JCST2015-00004
Abstract
MgO-Al2O3-SiO2 (MAS) glass powders have been successfully synthesized by means of the low-temperature combustion technique using magnesium nitrate, aluminium nitrate and silicic acid as raw materials, and urea as fuel. The sintering behavior, crystallization process and dielectric properties of the MAS were investigated with DCS, XRD, TMA and SEM techniques. The results indicate that the sintering temperature of the as-prepared glass powders decreased with the addition of B2O3 and only α-cordierite was precipitated as a main crystal phase, i.e. without μ-cordierite, for the glass powders heated at 1000 °C. Moreover, the as-prepared α-cordierite exhibited a dense microstructure, the additive (B2O3 2.5 %) reducing the crystallization temperature of α-cordierite phase from 1050 °C to 900 °C. The obtained cordierite-based glass-ceramics (sintered at 950 °C and 1000 °C) have a low dielectric constant (4.00 ∼ 4.03 at 1 MHz), a low dielectric dissipation factor (≈ 0.003) and high sintering density (which is up to 98 % of the theoretical density). The properties of as-prepared MAS satisfy all requirements of a material for electronic packaging, making it a promising candidate for application as electronic packaging.
Download Full Article (PDF)
Keywords
Cordierite-based glass ceramics, low-temperature combustion synthesis, crystallization process, sintering behavior, electronic packaging
References
1 Pannhorst, W.: Recent developments for commercial applications of low expansion glass ceramics, Glass Technol. – Part A, 45, 51 – 53, (2004).
2 Prasad, A., Basu, A.: Dielectric and impedance properties of sintered magnesium aluminum silicate glass-ceramic, J. Adv. Ceram., 2, 71 – 78, (2013).
3 González-Velasco, T.R., Ferret, R., López-Fonseca, R., Gutieŕrez-Ortiz, M.A.: Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction, Powder Technol., 153, 34 – 42, (2005).
4 Zhang, P.X., Hui, W.B., Zhang, Y., Ren, X.Z., Zhang, D.Y.: Molecular dynamics simulation for the rapid solidification process of MgO-Al2O3-SiO2 glass-ceramics, J. Non-Cryst. Solids, 358, 1465 – 1473, (2012).
5 Hunger, A., Carl, G., Rüssel, C.: Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses, Solid State Sci., 12, 1570 – 1574, (2010).
6 Shieh, Y.N., Rawlings, R.D., West, R.F.: Constitution of laser melted Al2O3-MgO-SiO2 ceramics, Mater. Sci. Technol., 11, 863 – 869, (1995).
7 Douy, A.: Organic gels in the preparation of silico-aluminate powders. II. Cordierit, J. Eur. Ceram. Soc., 7, 397 – 403, (199l).
8 Guo, X.Z., Nakanishi, K., Kanamori, K., Zhu, Y., Yang, H.: Preparation of macroporous cordierite monoliths via the sol-gel process accompanied by phase separation, J. Eur. Ceram. Soc., 34, 817 – 823, (2014).
9 Komarneni, S.: Some significant advances in sol-gel processing of dense structural ceramics, J. Sol-Gel Sci. Technol., 6, 127 – 138, (1996).
10 Winter, W.: Sintering and crystallization of volume- and surface-modified cordierite glass powders, J. Mater. Sci., 32, 1649 – 1655, (1997).
11 Oelgardt, C., Günster, J., Heinrich J.G.: Characterization of the crystallization behavior of laser-fused transparent microspheres with the eutectic composition Al2O3-Y2O3-ZrO2 (AYZ), J. Ceram. Sci. Tech. 02, 103 – 110, (2011).
12 Hmood, F.J., Oelgardt, C., Görke, R., Heinrich J.G.: Preparation of transparent microspheres in the system K0.5Na0.5NbO3 by laser fusing, J. Ceram. Sci. Tech., 04, 41 – 48, (2013).
13 Li, Z., Wu, J.F., Song, L., Huang, Y.Q.: Effect of composition on sinter-crystallization and properties of low temperature co-fired α-cordierite glass-ceramics, J. Eur. Ceram. Soc., 34, 3981 – 3991, (2014).
14 Choi, Y-J., Park, J-H,. Park, J-H., Nahm, S., Park, J-G.: Middle-and high-permittivity dielectric compositions for low-temperature co-fired ceramics, J. Eur. Ceram. Soc., 27, 2017 – 2024, (2007).
15 Chen, G.H.: A New Low-temperature Co-fired Cordierite-based Glass-ceramics, Piezoelectrics & Acoustooptics, 04, 421, (2005).
16 Psator, J.Y., LLorca, J., Martín, A., Pena, J.I., Oliete, P.B.: Fracture toughness and strength of Al2O3-Y3Al5O12 and Al2O3-Y3Al5O12-ZrO2 directionally solidified eutectic oxides up to 1900 K, J. Eur. Ceram. Soc., 28, 2345 – 2351, (2008).
17 Kong, X., Sun, H.Y., Wang, Q.B., Yi, Z.Z., Wang, B.S., Liu, G.Y.: Improvement in the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis, Ceram. Int., 40, 11611, (2014).
18 Hong, C.S., Ravindranathan, P., Agrawal, D.K., et al.: Synthesis and sintering of amorphous cordierite powders by a combustion method, J. Mater. Sci. Lett., 13, 1361 – 1363, (1994).
19 Shao, H., Liang, K., Zhou, F., Wang, G., Hu, A.: Microstructure and mechanical properties of MgO-Al2O3-SiO2-TiO2 glass-ceramics, Mater. Res. Bull., 40, 499 – 506, (2005).
20 Dittmer, M., Müller, M., Rüssel, C.: Self-organized nanocrystallinity in MgO-Al2O3-SiO2 glasses with ZrO2 as nucleating agent, Mater. Chem. Phys., 124, 1083 – 1088, (2010).
21 Dittmer, M., Yamamoto, C.F., Bocker, C., Rüssel, C.: Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria, Solid State Sci., 13, 2146 – 2153, (2011).
22 Yang, C.F., Cheng, C.M.: The influence of B2O3 on the sintering of MgO-CaO-Al2O3-SiO2 composite glass powder, Ceram. Int., 25, 383, (1999).
23 Ruiz-Valdés, J.J., Gorokhovsky, A.V., Escalante-Garc, J.I., Mendoza-Suárez, G.: Glass-ceramic materials with regulated dielectric properties based on the system BaO-PbO-TiO2-B2O3-Al2O3, J. Eur. Ceram. Soc., 24, 1505 – 1508, (2004).
24 EI-Kheshen, A.A., Zawrah, M.F.: Sinterability, microstructure and properties of glass/ceramic composites, Ceram. Int., 29, 251 – 257, (2003).
Copyright
Göller Verlag GmbH