Articles
All articles | Recent articles
Microstructure and Mechanical Properties of Al2O3-C Refractories Using Carbon Black and Multi-Walled Carbon Nanotubes as Carbon Sources
Y. W. Li1, N. Liao1, S. B. Sang1, H. Peng2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology. Wuhan 430081, China
2 Elkem silicon materials, P.O.Box 8126 Vaagsbygd, 4675 Kristiansand, Norway.
received January 5, 2015, received in revised form March 5, 2015, accepted March 12, 2015
Vol. 6, No. 3, Pages 207-214 DOI: 10.4416/JCST2015-00003
Abstract
Low-carbon Al2O3-C refractories were prepared using tabular alumina and reactive alumina powder as the main raw materials and silicon powder as an additive, while nano carbon black and multi-walled carbon nanotubes (MWCNTs) were added as nano carbon sources. The low-carbon Al2O3-C refractories were first fired at 800 °C, 1000 °C, 1200 °C and 1400 °C in a coke bed. Then the phase compositions and microstructures of the samples coked at the above temperatures were analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Finally, the mechanical properties and thermal shock resistance of the samples were evaluated using three-point bending methods. The results showed that: 1) The mechanical properties of MWCNTs-containing Al2O3-C refractories coked above 1000 °C were significantly improved, which is attributed to the strengthening effects of MWCNTs and the formation of a large quantity of SiC whiskers via transformation of MWCNTs based on the Vapor-Solid model. 2) Thanks to the thermal stress absorption effect of nano carbon black, strengthening effects of MWCNTs and SiC whiskers, the low-carbon Al2O3-C refractories containing 1 wt% mixture of nano-carbon-black and MWCNTs achieved a similar residual strength ratio to those containing a 2 wt% mixture of nano carbon black and flaky graphite, exhibiting a higher residual strength.
Download Full Article (PDF)
Keywords
Mechanical properties, thermal shock resistance, Al2O3-C refractories, nano carbon black, MWCNTs
References
1 Li, N.: NAIHUOCAILIAOXUE (in Chinese), Beijing: Metallurgical Industry Press, 214, (2010).
2 Peng, X., Li, L., Peng, D.: The progress of low-carbon composite study, Refractories, 37, [6], 355 – 357, (2003).
3 Zhu, B.Q., Zhang, W.J., Yao, Y.S.: Current situation and development of low-carbon magnesia-carbon materials research, Refractories, 40, [1], 90 – 95, (2006).
4 Mohamed, E., Ewais, M.: Carbon based refractories, J. Ceram. Soc. Jpn. 112, [10], 517 – 532, (2004).
5 Tamura, S., Ochiai, T., Takanaga, S., Kanai, T., Nakamura, H.: Nano-tech refractories-1: the development of nano structured matrix, in: Proceedings of UNITECR-03 Congress, Osaka, Japan, 19 – 22 October, 517 – 520, (2003).
6 Tamura, S., Ochiai, T., Takanaga, S., Kanai, T., Nakamura, H.: Nano-tech refractories-2: the development of the nano structural matrix to bricks, in: Proceedings of UNITECR-03 Congress, Osaka, Japan, 19 – 22 October, 521 – 524, (2003).
7 Shiratani, Y., Yotabun, T., Chihara, K., Ochiai, T., Tamura S.: Nano-tech. refractories-4: the application of the nano structural matrix to SN plates, in: Proceedings of the UNITECR'05 Congress, Orlando, USA, 8 – 11 November, (2005).
8 Yasumitsu, H., Hirashima, M., Matsuura, O., Takanaga, S., Ochiai, T., Tamura, S.: Nano-tech. refractories-9: the basic study on the formation of the nano structured matrix in bricks, in: Proceedings of the UNITECR'11 Congress, Kyoto, Japan, October 30 – November 2, (2011).
9 Tamura, S., Ochiai, T., Takanaga, S.: Nano-tech. refractories-12: development of nano-tech refractories of 0 % graphite content, in: proceedings of the UNITECR'12 Congress, Victoria, BC, Canada, 10 – 13 September, (2013).
10 Tamura, S., Ochiai, T., Takanaga, S., Kanai, T., Nakamura, H.: Nano-tech. refractories-8: technological philosophy and evolution of nano-tech. refractories, in: Proceedings of the UNITECR'11 Congress, Kyoto, Japan, October 30 – November 2, (2011).
11 Bag, M., Adak, S., Sarkar, R.: Study on low carbon containing refractory: use of nano carbon, Ceram. Int., 38, 2339 – 2346, (2012).
12 Bag, M., Adak, S., Sarkar, R.: Nano carbon containing refractory: effect of graphite content, Ceram. Int., 38, 4909 – 4914, (2012).
13 Tanaka, M., Kamioa, H., Yoshitomi, J., Kayama, T., Hanagiri, S., Goto, K.: Nano-tech. refractories-10: nano-tech. bricks for converters to minimize the heat loss, in: Proceedings of the UNITECR'11 Congress, Kyoto, Japan, October 30 – November 2, (2011).
14 Matsuo, Y., Tanaka, M., Yoshitomi, J., Yoon, S., Miyawaki, J.: Effect of the carbon nanofiber addition on the mechanical properties of brick, in: Proceedings of UNITECR'11 Congress, October 30 – November 2, Kyoto, Japan, (2011).
15 Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., chang, B., xu, J.M.: direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater., 52, 931 – 944, (2004).
16 Estili, M., Kawasaki, A., Sakamoto, H., Mekuchi, Y., Kuno, M., Tsukada, T.: The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in a-alumina ceramics for structural reinforcement, Acta Mater., 56, 4070 – 4079, (2008).
17 Luo, M., Li, Y.W., Jin, S.L., Sang, S.B., Zhao, L., Li, Y.B.: Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes, Mater. Sci. Eng., A, 548, 134 – 141, (2012).
18 Luo, M., Li, Y.W., Sang, S.B., Zhao, L., Jin, S.L., Li, Y.B.: In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-crefractories with addition of Ni-catalyzed phenolic resin, Mater. Sci. Eng., A, 558, 533 – 542, (2012).
19 Aneziris, C.G., Jin, S.L., Li, Y.W.: Interactions of carbon nanotubes in A12O3-C refractories for sliding gate application[C], in: Proceedings of the UNITECR'09 Congress: Brazil, Salvador, 28, (2009).
20 Zhu, T.B., Li, Y.W., Luo, M., Sang, S.B., Wang, Q.H., Zhao, L., Li, Y.B., Li, S.J.: Microstructure and mechanical properties of refractories containing graphite oxide nanosheets (GONs), Ceram. Int., 39, 3017 – 3025, (2013).
21 Wang, Q.H., Li, Y.W., Luo, M., Sang, S.B., Zhu, T.B., Zhao, L.: Strengthening mechanism of graphene oxide nanosheets for Al2O3-C refractories, Ceram. Int., 40, 163 – 172, (2014).
22 Tamura, S. et al.: Nippon steel technical report, No.98, July, 18 – 28, (2008).
23 Liao, N., Li, Y.W., Sang, S.B., Huang, F., Liu, J., Li, Y.X., Lin, Z.J.: Effect of different kinds of carbon black on microstructure and mechanical properties of low carbon A12O3-C refractories, J. Chin. Ceram. Soc., 42, [12], 1591 – 1599, (2014).
24 Liao, N., Li, Y.W., Sang, S.B.: Microstructure evolutions of Multi-walled carbon nanotubes (MWCNTs) in Al2O3-C refractory at high temperatures, J. Chin. Ceram. Soc., (accepted).
25 Fan, H.B., Li, Y.W., Sang, S.B.: Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources, Mater. Sci. Eng., A, 528, 3177 – 3185, (2011).
26 Li, Y.W., Wang, Q.H., Fan, H.B., Sang, S.B., Li, Y.B., Zhao, L.: Synthesis of silicon carbide whiskers using reactive graphite as template, Ceram. Int., 40, 1481 – 1488, (2014).
27 Taguchi, T., Igawa, N., Yamamoto, H., Shamoto, S.I., Jitsukawa, S.: Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes, Physica E, 28, 431 – 438, (2005).
28 Tang, C.C., Fan, S.S., Dang, H.Y., Zhao, J.H., Zhang, C., Li, P., Gu, Q.: Growth of SiC nanorods prepared by carbon nanotubes-confined reaction, J. Cryst. Growth, 210, 595 – 599, (2000).
29 Han, W.Q., Fan, S.S., Li, Q.Q., Gu, B.L.: Study on the silicon carbide nanorods produced from carbon nanotubes, J. Inorg. Mater., 12, 774 – 778, (1997).
Copyright
Göller Verlag GmbH