• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Highly Porous Scaffolds Made of Nanosized Hydroxyapatite Powder Synthesized from Eggshells

S.M. Naga1, H.F. El-Maghraby1, M. Sayed1, E.A. Saad2

1 National Research Centre, Ceramics Department, 12622 El-Bohouth Str., Dokki, Cairo (Egypt)
2 Ain ShamsUniversity, Faculty of Science, Chemistry Department, Cairo (Egypt)

received December 30, 2014, received in revised form January 9, 2015, accepted February 6, 2015

Vol. 6, No. 3, Pages 237-244   DOI: 10.4416/JCST2014-00058

Abstract

Nanosize hydroxyapatite powder synthesized indirectly from eggshells is used to produce 3D porous scaffolds. They are fabricated via a polymeric sponge method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the phase composition and grain size of the scaffolds, respectively. The results showed that the prepared powder is composed of pure hydroxyapatite with a grain size ranging between 35 and 122 nm. The prepared scaffolds calcined at 1250 °C for 2 h possess interconnected porosity (≈ 73 %). The studied scaffolds showed suitable mechanical strength necessary for bone tissue engineering. Their crushing and bending strengths were 0.82 MPa and 1.72 MPa, respectively. Thin film XRD, SEM and EDS confirmed the presence of a rich bone-like apatite layer post-immersion in SBF on the scaffold's surface.

Download Full Article (PDF)

Keywords

Bioceramics, hydroxyapatite, porous scaffolds, mechanical properties

References

1 GLOBAL POULTRY TRENDS 2013 – Hen Egg Production in Africa and Oceania, The poultry site, www.thepoultrysite.com.

2 Rivera, E.M., Araiza, M., Brostow, W., Castǎno, V.M., Diaz-Estrada, J.R., Hermández, R., Rodriguez, J.R.: Synthesis of hydroxyapatite from egg-shells, Mater. Lett., 41, 128 – 134, (1999).

3 Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci., 49, [4], 1461 – 1475, (2014).

4 Siddharthan, A., Sampath Kumar, T.S., Seshadri. S.K.: Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios, Biomed. Mater., 4, 045010 – 045019, (2009).

5 Park, J.W., Bae, S.R., Suh, J.Y., Lee, D.H., Kim, S.H., Kim, H., Lee, C.S.: Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria, a pilot study, J. Biomed. Mater. Res. A, 87A, 203 – 214, (2008).

6 Zhang, C.M., Yang, J., Quan, Z.W., Yang P.P., Li, C.X., Hou, Z.Y., Lin, J.: Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties, Cryst. Growth Des., 9, 2725 – 2733, (2009).

7 Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P., Ho, W.F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite, Ceram. Int., 39, 8183 – 8188, (2013).

8 Sanosh, K.P., Chu, M., Balakrishnan, A., Kim. T.N., Cho, S.: Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders, Mater. Lett., 63, 2100 – 2102, (2009).

9 Meski, S., Ziani, S., Khireddine, H.: Removal of lead ions by hydroxyapatite prepared from eggshell, J. Chem. Eng. Data., 55, 3923 – 3928, (2010).

10 Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., Wu, S.C.: Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction, Ceram. Int., 39, 6467 – 6473, (2013).

11 Chaudhuri, B., Mondal, B., Modak, D.K., Pramanik, K., Chaudhuri, B.K.: Preparation and characterization of nanocrystalline hydroxyapatite from eggshell and K2HPO4 solution, Mater. Lett., 97, 148 – 150, (2013).

12 Liu, J., Li, K., Wang, H., Zhu, M., Yan, H.: Rapid formation of hydroxyapatite nanostructures by microwave irradiation, Chem. Phys. Lett., 396, 429 – 432, (2004).

13 Martins, M.A., Antos, C.S., Almeida, M.M., Costa, M.E.U.: Hydroxyapatite micro and nano-particles: nucleation and growth mechanism in the presence of citrate species, J. Colloid. Interf. Sci., 318, 210 – 216, (2008).

14 Wang, Y., Hassan, M.S., Gunawan, P., Lau, R., Wang, X., Xu, R.: Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure, J. Colloid. Interf. Sci., 339, 69 – 77, (2009).

15 Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R., Roy, K.: Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application, B. Mater. Sci., 35, [4], 683 – 691, (2012).

16 Lee, S.J., Kwak, J.Y., Kriven, W.M.: Effect of a polymer addition on the crystallite size and sinterability of hydroxyapatite prepared with CaO powder and phosphoric acid, J. Ceram. Process. Res., 13, [3], 243 – 247, (2012).

17 Lee, S.W., Balázsi, C., Balázsi, K., Seo, D.H., Kim, H.S., Kim, C.H., Kim, S.G.: Comparative study of hydroxyapatite prepared from seashells and eggshells as a bone graft material, Tissue Eng. Regen. Med., 11, [2], 113 – 120, (2014).

18 Adak, M.D., Chattopadhyaya, A.K., Purohit, K.M.: Synthesis of nano-crystalline hydroxyapatite from kitchen waste, J. Pharm. Res., 3, [8], 1930 – 1932, (2010).

19 Prabakaran, K., Rajeswari, S.: Spectroscopic investigations on the synthesis of nano- hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template, Spectrochim. Acta. A, 74, 1127 – 1134, (2009).

20 Murphy, W.L., Dennis, R.G., Kileny, J.L., Mooney, D.J.: Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds, Tissue Eng., 8, 43 – 52, (2002).

21 Whang, K., Thomas, C.H., Healy, K.E., Nuber, G.: A novel method to fabricate bioabsorbable scaffolds, Polymer, 36, 837 – 842, (1995).

22 Whang, K., Goldstick, T.K., Healy, K.E.: A biodegradable polymer scaffold for delivery of osteotropic factors, Biomaterials, 21, 2545 – 2551, (2000).

23 Kim, T.K., Yoon, J.J., Lee, D.S., Park, T.G.: Gas foamed open porous biodegradable polymeric microspheres, Biomaterials, 27, 152 – 129, (2006).

24 Rouholamin, D., Smith, P.J., Ghassemieh, E.: Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming, J. Mater. Sci., 48, 3254 – 3263, (2013).

25 Liulan, L., Huicun, Z., Li, Z., Qingxi, H., Minglum, F.: Design and preparation of bone tissue engineering scaffolds with porous controllable structure, J. Wuhan Uni. Technol. Mater. Sci. Ed., 24, 174 – 180, (2009).

26 Pujiang, S., Yubao, L., Li, Z.: Fabrication and characterization of n- HA/CS porous scaffolds containing ALC/CS microspheres, J. Funct. Mater., 37, 1798 – 1800, (2006).

27 Liulan, L., Ju, S., Cen, L., Zhang, H., Hu, Q.: Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. 7th Asian- Pacific Conference on Medical Biological Engineering, IFMBE Proceedings, 19, 88 – 91, (2008).

28 Todea, M., Frentiu, B., Turcu, R.F.V., Berce, P., Simon, S.: Surface structure changes on aluminosilicate microspheres at the interface with simulated body fluid, Corros. Sci., 54, 299 – 306, (2012).

29 Prabakaran, K., Balamurugan, A., Rajeswari, S.: Development of calcium phosphate based apatite from hen's eggshell, B. Mater. Sci., 28, [2], 115 – 119, (2005).

30 Hui, P., Meena, S.L., Singh, G., Agarawal, R.D., Prakashe. S.: Synthesis of hydroxyapatite bio-ceramic powder by hydrothermal method, J. Miner. Mater. Charact. Eng., 9, [8], 683 – 692, (2010).

31 Gergely, G., Wéber, F., Lukács, I., Illés, L., Tóth, A.L., Horváth, Z.E., Mihály, J., Balázsi, C.: Nano-hydroxyapatite preparation from biogenic raw materials, Cent. Eur. J. Chem., 8, [2], 375 – 381, (2010).

32 Kim, B.S., Mooney, D.J.: Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends Biotechnol., 16, 224 – 230, (1998).

33 Lorenzo, L.M.R., Regí, M.V., Ferreira J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder, Biomaterials, 22, 583 – 588, (2001).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH