Articles
All articles | Recent articles
Highly Porous Scaffolds Made of Nanosized Hydroxyapatite Powder Synthesized from Eggshells
S.M. Naga1, H.F. El-Maghraby1, M. Sayed1, E.A. Saad2
1 National Research Centre, Ceramics Department, 12622 El-Bohouth Str., Dokki, Cairo (Egypt)
2 Ain ShamsUniversity, Faculty of Science, Chemistry Department, Cairo (Egypt)
received December 30, 2014, received in revised form January 9, 2015, accepted February 6, 2015
Vol. 6, No. 3, Pages 237-244 DOI: 10.4416/JCST2014-00058
Abstract
Nanosize hydroxyapatite powder synthesized indirectly from eggshells is used to produce 3D porous scaffolds. They are fabricated via a polymeric sponge method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the phase composition and grain size of the scaffolds, respectively. The results showed that the prepared powder is composed of pure hydroxyapatite with a grain size ranging between 35 and 122 nm. The prepared scaffolds calcined at 1250 °C for 2 h possess interconnected porosity (≈ 73 %). The studied scaffolds showed suitable mechanical strength necessary for bone tissue engineering. Their crushing and bending strengths were 0.82 MPa and 1.72 MPa, respectively. Thin film XRD, SEM and EDS confirmed the presence of a rich bone-like apatite layer post-immersion in SBF on the scaffold's surface.
Download Full Article (PDF)
Keywords
Bioceramics, hydroxyapatite, porous scaffolds, mechanical properties
References
1 GLOBAL POULTRY TRENDS 2013 – Hen Egg Production in Africa and Oceania, The poultry site, www.thepoultrysite.com.
2 Rivera, E.M., Araiza, M., Brostow, W., Castǎno, V.M., Diaz-Estrada, J.R., Hermández, R., Rodriguez, J.R.: Synthesis of hydroxyapatite from egg-shells, Mater. Lett., 41, 128 – 134, (1999).
3 Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci., 49, [4], 1461 – 1475, (2014).
4 Siddharthan, A., Sampath Kumar, T.S., Seshadri. S.K.: Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios, Biomed. Mater., 4, 045010 – 045019, (2009).
5 Park, J.W., Bae, S.R., Suh, J.Y., Lee, D.H., Kim, S.H., Kim, H., Lee, C.S.: Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria, a pilot study, J. Biomed. Mater. Res. A, 87A, 203 – 214, (2008).
6 Zhang, C.M., Yang, J., Quan, Z.W., Yang P.P., Li, C.X., Hou, Z.Y., Lin, J.: Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties, Cryst. Growth Des., 9, 2725 – 2733, (2009).
7 Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P., Ho, W.F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite, Ceram. Int., 39, 8183 – 8188, (2013).
8 Sanosh, K.P., Chu, M., Balakrishnan, A., Kim. T.N., Cho, S.: Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders, Mater. Lett., 63, 2100 – 2102, (2009).
9 Meski, S., Ziani, S., Khireddine, H.: Removal of lead ions by hydroxyapatite prepared from eggshell, J. Chem. Eng. Data., 55, 3923 – 3928, (2010).
10 Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., Wu, S.C.: Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction, Ceram. Int., 39, 6467 – 6473, (2013).
11 Chaudhuri, B., Mondal, B., Modak, D.K., Pramanik, K., Chaudhuri, B.K.: Preparation and characterization of nanocrystalline hydroxyapatite from eggshell and K2HPO4 solution, Mater. Lett., 97, 148 – 150, (2013).
12 Liu, J., Li, K., Wang, H., Zhu, M., Yan, H.: Rapid formation of hydroxyapatite nanostructures by microwave irradiation, Chem. Phys. Lett., 396, 429 – 432, (2004).
13 Martins, M.A., Antos, C.S., Almeida, M.M., Costa, M.E.U.: Hydroxyapatite micro and nano-particles: nucleation and growth mechanism in the presence of citrate species, J. Colloid. Interf. Sci., 318, 210 – 216, (2008).
14 Wang, Y., Hassan, M.S., Gunawan, P., Lau, R., Wang, X., Xu, R.: Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure, J. Colloid. Interf. Sci., 339, 69 – 77, (2009).
15 Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R., Roy, K.: Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application, B. Mater. Sci., 35, [4], 683 – 691, (2012).
16 Lee, S.J., Kwak, J.Y., Kriven, W.M.: Effect of a polymer addition on the crystallite size and sinterability of hydroxyapatite prepared with CaO powder and phosphoric acid, J. Ceram. Process. Res., 13, [3], 243 – 247, (2012).
17 Lee, S.W., Balázsi, C., Balázsi, K., Seo, D.H., Kim, H.S., Kim, C.H., Kim, S.G.: Comparative study of hydroxyapatite prepared from seashells and eggshells as a bone graft material, Tissue Eng. Regen. Med., 11, [2], 113 – 120, (2014).
18 Adak, M.D., Chattopadhyaya, A.K., Purohit, K.M.: Synthesis of nano-crystalline hydroxyapatite from kitchen waste, J. Pharm. Res., 3, [8], 1930 – 1932, (2010).
19 Prabakaran, K., Rajeswari, S.: Spectroscopic investigations on the synthesis of nano- hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template, Spectrochim. Acta. A, 74, 1127 – 1134, (2009).
20 Murphy, W.L., Dennis, R.G., Kileny, J.L., Mooney, D.J.: Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds, Tissue Eng., 8, 43 – 52, (2002).
21 Whang, K., Thomas, C.H., Healy, K.E., Nuber, G.: A novel method to fabricate bioabsorbable scaffolds, Polymer, 36, 837 – 842, (1995).
22 Whang, K., Goldstick, T.K., Healy, K.E.: A biodegradable polymer scaffold for delivery of osteotropic factors, Biomaterials, 21, 2545 – 2551, (2000).
23 Kim, T.K., Yoon, J.J., Lee, D.S., Park, T.G.: Gas foamed open porous biodegradable polymeric microspheres, Biomaterials, 27, 152 – 129, (2006).
24 Rouholamin, D., Smith, P.J., Ghassemieh, E.: Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming, J. Mater. Sci., 48, 3254 – 3263, (2013).
25 Liulan, L., Huicun, Z., Li, Z., Qingxi, H., Minglum, F.: Design and preparation of bone tissue engineering scaffolds with porous controllable structure, J. Wuhan Uni. Technol. Mater. Sci. Ed., 24, 174 – 180, (2009).
26 Pujiang, S., Yubao, L., Li, Z.: Fabrication and characterization of n- HA/CS porous scaffolds containing ALC/CS microspheres, J. Funct. Mater., 37, 1798 – 1800, (2006).
27 Liulan, L., Ju, S., Cen, L., Zhang, H., Hu, Q.: Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. 7th Asian- Pacific Conference on Medical Biological Engineering, IFMBE Proceedings, 19, 88 – 91, (2008).
28 Todea, M., Frentiu, B., Turcu, R.F.V., Berce, P., Simon, S.: Surface structure changes on aluminosilicate microspheres at the interface with simulated body fluid, Corros. Sci., 54, 299 – 306, (2012).
29 Prabakaran, K., Balamurugan, A., Rajeswari, S.: Development of calcium phosphate based apatite from hen's eggshell, B. Mater. Sci., 28, [2], 115 – 119, (2005).
30 Hui, P., Meena, S.L., Singh, G., Agarawal, R.D., Prakashe. S.: Synthesis of hydroxyapatite bio-ceramic powder by hydrothermal method, J. Miner. Mater. Charact. Eng., 9, [8], 683 – 692, (2010).
31 Gergely, G., Wéber, F., Lukács, I., Illés, L., Tóth, A.L., Horváth, Z.E., Mihály, J., Balázsi, C.: Nano-hydroxyapatite preparation from biogenic raw materials, Cent. Eur. J. Chem., 8, [2], 375 – 381, (2010).
32 Kim, B.S., Mooney, D.J.: Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends Biotechnol., 16, 224 – 230, (1998).
33 Lorenzo, L.M.R., Regí, M.V., Ferreira J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder, Biomaterials, 22, 583 – 588, (2001).
Copyright
Göller Verlag GmbH