• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

The Effect of Thermal Treatment on Tensile Properties of Basalt Fibers

S.M.M. Sabet1, F. Akhlaghi2, R. Eslami-Farsani3

1 MIT Portugal Program, University of Minho, 4800-058 Guimarães, Portugal
2 School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
3 Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Mollasadra Ave., Tehran, Iran

received December 16, 2014, received in revised form January 26, 2015, accepted February 20, 2015

Vol. 6, No. 3, Pages 245-248   DOI: 10.4416/JCST2014-00053

Abstract

The use of basalt fibers as a reinforcement in various composites requires the application of elevated temperatures during synthesis and processing conditions depending on the technique utilized. In this study, the tensile strength of basalt fibers at room temperature and also after exposure to 300, 350, 400, 450 and 500 °C in a furnace for durations of 5, 10, 15 and 20 min was investigated. The results indicate that the residual strength of basalt fibers drastically decreases after 20 min exposure at 300 and 400 °C and is only about 57 % and 35 % of that of fibers at room temperature, respectively. At 450 and 500 °C, this drastic decrease occurs after only 5 min. These results indicate the optimum conditions for processing parameters for basalt fibers and the composites based on them.

Download Full Article (PDF)

Keywords

Basalt fibers, monofilament, bundle, tensile and residual strength.

References

1 Goldworthy, W.B.: New basalt fiber increases composite potential, Compos. Technol., 8, 1 – 15, (2000).

2 Singha, K.: A short review on basalt fiber, International Journal of Textile Science, 1, [4], 19 – 28, (2012).

3 Kostikov, V.I., Makhova, M.F., Sergeev, V.P., Trefilov, V.I.: Ceramic fibers, in Fibre Science and Technology (Soviet Advanced Composites Technology Series), J. N. Fridlyander and I. H. Marsball, Eds. Springer, 1995, 580 – 603.

4 Czigány, T.: Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study, Compos. Sci. Technol., 66, [16], 3210 – 3220, (2006).

5 Rapp, C.F., Fausey, W.H., Gonterman, J.R.: Basalt compositions and their fibers, US Patent No. 4560606, 1985.

6 Schiavon, M.A., Redondo, S.U.A., Yoshida, I.V.P.: Thermal and morphological characterization of continuous basalt fibres (in Portuguese), Cerâmica, 53, 212 – 217, (2007).

7 Parnas, R., Shaw, M.: Basalt fiber reinforced polymer composites – prepared for the new england transportation consortium, (2007).

8 Weddell, J.K.: Continuous ceramic fibres, J. Text. Inst., 81, 333 – 359, (1990).

9 Brik, V.B.: Multifunctional apparatus for manufacturing mineral basalt fibers, US Patent 6647747, (2003).

10 Kamiya, S., Sasaki, H. Nakagawa, N.: Method for manufacturing basalt fiber, US Patent 8501643, (2013).

11 Wei, B., Cao, H., Song, S.: Environmental resistance and mechanical performance of basalt and glass fibers, Mater. Sci. Eng. A, 527, 18 – 19, 4708 – 4715, (2010).

12 Sim, J., Park, C., Mon, D.Y.: Characteristics of basalt fiber as a strengthening material for concrete structures, Compos. Part B Eng., 36, [6 – 7], 504 – 512, (2005).

13 Amuthakkannan, P., Manikandan, V., Jappes, J.T.W., Uthayakumar, M.: Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites, Mater. Phys. Mech., 16, 107 – 117, (2013).

14 Van de Velde, K., Kiekens, P., Van Langenhove, L.: Basalt fibers as reinforcement for composites, Zwijnaarde, Belgium.

15 Ibrahim, A., Faisal, S., Jamil, N.: Use of basalt in asphalt concrete mixes, Constr. Build. Mater., 23, 498 – 506, (2009).

16 Sabet, S.M.M., Akhlaghi, F., Eslami-farsani, R.: Production and optimization of aluminum-basalt composites by hand lay-out technique, in Proceedings of the World Congress on Engineering, Vol. III, 1826 – 1829, (2012) .

17 Akhlaghi, F., Eslami-Farsani, R.,Sabet, S.: Synthesis and characteristics of continuous basalt fiber-reinforced aluminum matrix composites, J. Compos. Mater., 47, [27], 3379 – 3388, (2012).

18 Khalili, S.M.R., Daghigh, V., Farsani, R.E.: Mechanical behavior of basalt fiber-reinforced and basalt fiber metal laminate composites under tensile and bending loads, J. Reinf. Plast. Compos., 30, [8], 647 – 659, (2011).

19 Antonov, M., Surženkov, A., Hussainova, I., Goljandin, D., Mikli, V.: Effect of basalt addition on tribological performance of FeCrSiB HVOF coatings, Est. J. Eng., 18, [3], 211 – 220, (2012).

20 Hrynyk, R., Frydrych, I., Irzmanska, E., Stefko, A.: Thermal properties of aluminized and non-aluminized basalt fabrics, Text. Res. J., 83, [17], 1860 – 1872, (2013).

21 Rambo, D.A.S., de Andrade Silva, F., Toledo Filho, R.D., da Fonseca Martins Gomes, O.: Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete, Mater. Des., 65, 24 – 33, (2015).

22 Militky, J.V., Kovacic, V., Rubnerova, J.: Influence of thermal treatment on tensile failure of basalt fibers, Eng. Fract. Mech., 69, [9], 1025 – 1033, (2002).

23 Carbon fiber-determination of the tensile properties of single-filament specimens, ISO 11566, (1988).

24 Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites, Compos. Part B Eng., (2015).

25 Wagner, D.H.: Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials, J. Polym. Sci. Part B Polym. Phys., 27, [1], 115 – 149, (1989).

26 Rubernova, J.: Thermomechanical properties of inorganic fibers, Technical University of Liberec, 1996.

27 Manylov, M., Gutnikov, S., Pokholok, K., Lazoryak, B., Lipatov, Y.: Crystallization mechanism of basalt glass fibers in air, Mendeleev Commun., 23, [6], 361 – 363, (2013).

28 Makhova, M.F.: Crystallization of basalt fibers, Glas. Ceram., 25, [11], 672 – 674, (1968).

29 Karamanov, A., Pelino, M.: Crystallization phenomena in iron-rich glasses, J. Non. Cryst. Solids, 281, [1 – 3], 139 – 151, (2001).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH