Articles
All articles | Recent articles
Additive Manufacturing of Bioactive Glasses and Silicate Bioceramics
R. Gmeiner1, U. Deisinger2, J. Schönherr1, B. Lechner1, R. Detsch3, A. R. Boccaccini3, J. Stampfl1
1 Inst. of Materials Science and Technology, Christian Doppler Laboratory: Photopolymers in Digital and Restorative Dentistry, Vienna University of Technology, A-1040 Vienna, Austria
2 Institute of Glass and Ceramics, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany; Current address: CeramTec GmbH, Medical Technology, D-91207 Lauf, Germany
3 Institute of Biomaterials, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
received January 2, 2015, received in revised form March 4, 2015, accepted April 21, 2015
Vol. 6, No. 2, Pages 75-86 DOI: 10.4416/JCST2015-00001
Abstract
This paper reviews the application of a broad range of additive manufacturing technologies (AMTs), including Stereolithographic Ceramic Manufacturing (SLCM/LCM), 3D-Printing, indirect and direct Selective Laser Sintering/Melting (SLS/SLM), Dispense Plotting and Inkjet Plotting on bioactive glasses (BGs) and silicate bioceramics to fabricate a variety of dense and porous structures for biomedical applications (e.g. bone replacement materials). Topical studies in the literature are complemented by recent data of the authors' own work, highlighting the state of the art of additive bioceramic production. The specific characteristics of the technologies used, their advantages and disadvantages and the scope for future research in this field are discussed. To date, many studies focus on 45S5 Bioglass® due to its broad commercial availability. However, other bioactive glass formulations and sol-gel derived BGs are being also considered in the context of AMTs. As the geometrical accuracy and mechanical properties of the fabricated parts strongly vary among the different AMTs, in-depth knowledge of the detailed capabilities of each production process targeted for BGs and other silicate bioceramic materials, as collated in this review, provides information on the basic requirements and challenges for establishing follow-up studies and for possible expansion of the application fields of such additive-manufactured structures.
Download Full Article (PDF)
Keywords
Additive manufacturing, bioactive glasses, silicate bioceramics, scaffolds
References
1 Bertrand, P., Bayle, F., Combe, C., Goeuriot, P., Smurov, I.: Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci., 254, [4], 989 – 992, (2007).
2 Exner, H., Horn, M., Streek, A. Ullmann, F., Hartwig, L., Regenfuss, P., Ebert, R.: Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder, Virtual Phys. Prototyp., 3, [1], 3 – 11, (2008).
3 Kollenberg, W.: Technical Ceramics, in German, 2nd edition. Vulkan, Essen, Germany, 2009.
4 Götschel, I., Gutbrod, B., Travitzky, N., Roosen, A., Greil, P.: Processing of preceramic paper and ceramic green tape derived multilayer structures, Adv. Appl. Ceram., 112, [6], 358 – 365, (2013).
5 Windsheimer, H., Travitzky, N., Hofenauer, A., Greil, P.: Laminated object manufacturing of preceramic-paper-derived SiSiC composites, Adv. Mater., 19, [24], 4515 – 4519, (2007).
6 Novakova-Marcincinova, L., Novak-Marcincin, J., Barna, J., Torok, J.: Special materials used in FDM rapid prototyping technology application; pp. 73 – 76 in 2012 IEEE 16th Int. Conf. Intell. Eng. Syst. INES. 2012.
7 Felzmann, R., Gruber, S., Mitteramskogler, G., Tesavibul, P., Boccaccini, A.R., Liska, R.,Stampfl, J.: Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 14, [12], 1052 – 1058, (2012).
8 Shahzad, K., Deckers, J., Kruth, J.P., Vleugels, J.: Additive manufacturing of alumina parts by indirect selective laser sintering and post processing, J. Mater. Process. Technol., 213, [9], 1484 – 1494, (2013).
9 D'haese, J., Van De Velde, T., Komiyama, A., Hultin, M., De Bruyn, H.: Accuracy and complications using computer-designed stereolithographic surgical guides for oral rehabilitation by means of dental Implants: A review of the literature, Clin. Implant Dent. R., 14, [3], 321 – 335, (2012).
10 Ozan, O., Turkyilmaz, I., Ersoy, A.E., McGlumphy, E.A., Rosenstiel, S.F.: Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement, J. Oral Maxillofac. Surg., 67, [2], 394 – 401, (2009).
11 Fluegge, T.V., Nelson, K., Schmelzeisen, R., Metzger, M.C.: Three-dimensional plotting and printing of an implant drilling Guide: simplifying guided implant surgery, J. Oral Maxillofac. Surg., 71, [8], 1340 – 1346, (2013).
12 Bibb, R., Eggbeer, D., Evans, P., Bocca, A., Sugar, A.: Rapid manufacture of custom-fitting surgical guides, Rapid Prototyping J., 15, [5], 346 – 354, (2009).
13 Kasparova, M.,Grafova, L., Dvorak, P., Dostalova, T., Prochazka, A., Eliasova, H., Prusa, J., Kakawand, S.: Possibility of reconstruction of dental plaster cast from 3D digital study models, Biomed. Eng. OnLine, 12, [1], 49, (2013).
14 Wohlers, T., Caffrey, T.: Wohlers Report- Additive Manufacturing and 3D printing state of the industry. 2013.
15 Hutmacher, D.W., Sittinger, M., Risbud, M.V.: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol., 22, [7]. 354 – 362, (2004).
16 Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials, 23, [4], 1169 – 1185, (2002).
17 Sobral, J.M., Caridade, S.G., Sousa, R.A., Mano, J.F., Reis, R.L.: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency, Acta Biomater., 7, [3], 1009 – 1018, (2011).
18 Shao, X.X., Hutmacher, D.W., Ho, S.T., Goh, J.C.H., Lee, E.H.: Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits, Biomaterials, 27, [7], 1071 – 1080, (2006).
19 Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, J. Biomed. Mater. Res., 74 [2], 782 – 788, (2005).
20 Habibovic, P., Gbureck, U., Doillon, C.J., Bassett, D.C., van Blitterswijk, C.A., Barralet, J.E.: Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants, Biomaterials, 29, [7], 944 – 953, (2008).
21 Bartolo, P.J. da Silva, de Lemos, A.C.S., Pereira, A.M.H., Mateus, A.J.D.S., Ramos, C., Santos, C.D., Oliveira, D., Pinto, E. et al.: High Value Manufacturing: Advanced research in virtual and rapid prototyping: Proceedings of the 6th international conference on advanced research in virtual and rapid prototyping, Leiria, Portugal, 1 – 5 October, 2013. CRC Press, 2013.
22 Kumar, S., Kruth, J.-P.: Composites by rapid prototyping technology, Mater. Des., 31, [2], 850 – 856, (2010).
23 Knitter, R., Bauer, W.: Ceramic microfabrication by rapid prototyping process chains, Sadhana, 28, [1 – 2], 307 – 318, (2003).
24 Doreau, F., Chaput, C., Chartier, T.: Stereolithography for manufacturing ceramic parts, Adv. Eng. Mater., 2, [8], 493 – 496, (2000).
25 Gruber, S.: Lithography-based additive manufacturing of alumina parts; PhD Thesis, Vienna University of Technology, Vienna, Austria, 2013.
26 Felzmann, R., Gruber, S., Mitteramskogler, G., Pastrama, M., Boccaccini, A.R., Stampfl, J.: Lithography-based additive manufacturing of customized bioceramic parts for medical applications; in Biomed. Eng. ACTAPRESS, Innsbruck, Austria, 2013.
27 Tesavibul, P., Felzmann, R., Gruber, S., Liska, R., Thompson, I., Boccaccini, A.R., Stampfl, J.: Processing of 45S5 Bioglass® by lithography-based additive manufacturing, Mater. Lett., 74, 81 – 84, (2012).
28 Gerhardt, L.-C., Boccaccini, A.R.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials, 3, [7], 3867 – 3910, (2010).
29 Rahaman, M.N., Day, D.E., Sonny Bal, B., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering, Acta Biomater., 7, [6], 2355 – 2373, (2011).
30 Wu, C., Ramaswamy, Y., Zreiqat, H.: Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering, Acta Biomater., 6, [6], 2237 – 2245, (2010).
31 Vitale-Brovarone, C., Verné, E., Robiglio, L., Appendino, P., Bassi, F., Martinasso, G., Muzio, G., Canuto, R.: Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation, Acta Biomater., 3, [2], 199 – 208, (2007).
32 Gorustovich, A.A., Roether, J.A., Boccaccini, A.R.: Effect of bioactive glasses on Angiogenesis: A review of in vitro and in vivo evidences, Tissue Eng. Part B Rev., 16, [2], 199 – 207, (2010).
33 Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32, [11], 2757 – 2774, (2011).
34 Gmeiner, R., Mitteramskogler, G., Stampfl, J., Boccaccini, A.R.: Stereolithographic ceramic manufacturing of high strength bioactive glass, Int. J. Appl. Ceram. Technol., 12, 38-45, (2015).
35 Mitteramskogler, G., Gmeiner, R., Felzmann, R., Gruber, S., Hofstetter, C., Stampfl, J., Ebert, J., Wachter, W. et al.: Light curing strategies for lithography-based additive manufacturing of customized ceramics, Addit. Manuf., 1 – 4, 110 – 118, (2014).
36 Wu, C., Chang, J.: A review of bioactive silicate ceramics, Biomed. Mater., 8, [3], 032001, (2013).
37 Fu, Q., Rahaman, M.N., Bal, B.S., Kuroki, K., Brown, R.F.: In vivo evaluation of 13 – 93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model, J. Biomed. Mater. Res. A, 95A, [1], 235 – 244, (2010).
38 Durand, L.A.H., Góngora, A., López, J.M.P., Boccaccini, A.R., Zago, M.P., Baldi, A., Gorustovich, A.: In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system, J. Mater. Chem. B, 2, [43], 7620 – 7630, (2014).
39 Gu, Y., Huang, W., Rahaman, M.N., Day, D.E.: Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses, Acta Biomater., 9, [11], 9126 – 9136, (2013).
40 Detsch, R., Guillon, O., Wondraczek, L., Boccaccini, A.R.: Initial attachment of rMSC and MG-63 cells on patterned Bioglass® substrates, Adv. Eng. Mater., 14, [3], B38 – B44, (2012).
41 Marchelli, G., Prabhakar, R., Storti, D., Ganter, M.: The guide to glass 3D printing: developments, methods, diagnostics and results, Rapid Prototyp. J., 17, [3], 187 – 194, (2011).
42 Bretcanu, O., Chatzistavrou, X., Paraskevopoulos, K., Conradt, R., Thompson, I., Boccaccini, A.R.: Sintering and crystallisation of 45S5 Bioglass® powder, J. Eur. Ceram. Soc., 29, [16], 3299 – 3306, (2009).
43 Winkel, A., Meszaros, R., Reinsch, S., Müller, R., Travitzky, N., Fey, T., Greil, P., Wondraczek, L.: Sintering of 3D-printed Glass/HAp composites, J. Am. Ceram. Soc., 95, [11], 3387 – 3393, (2012).
44 Suwanprateeb, J., Sanngam, R., Suvannapruk, W., Panyathanmaporn, T.: Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing, J. Mater. Sci. Mater. M., 20, [6], 1281 – 1289, (2009).
45 Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., Fischer, H.: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses, J. Eur. Ceram. Soc., 30, [12], 2563 – 2567, (2010).
46 Zocca, A., Gomes, C.M., Bernardo, E., Müller, R., Günster, J., Colombo, P.: LAS glass-ceramic scaffolds by three-dimensional printing, J. Eur. Ceram. Soc., 33, [9], 1525 – 1533, (2013).
47 Meszaros, R., Zhao, R., Travitzky, N., Fey, T., Greil, P., Wondraczek, L.: Three-dimensional printing of a bioactive glass, Glass Technol. -Part A, 52, [4], 111 – 116, (2011).
48 Liu, J., Hu, H., Li, P., Shuai, C., Peng, S.: Fabrication and characterization of porous 45S5 glass scaffolds via direct selective laser sintering, Mater. Manuf. Process., 28, [6], 610 – 615, (2013).
49 Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials, 27, [11], 2414 – 2425, (2006).
50 Gao, C., Liu, T., Shuai, C., Peng, S.: Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance, Sci. Rep., 4, (2014).
51 Lorrison, J.C., Dalgarno, K.W., Wood, D.J.: Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering, J. Mater. Sci. Mater. M., 16, [8], 775 – 781, (2005).
52 Deisinger, U.: Selective laser melting of calcium phosphate glass/hydroxyapatite composites, in: Proceedings of the 11th ECERS conference in Krakow, pp. 424 – 426, (2009).
53 Kolan, K.C.R., Leu, M.C., Hilmas, G.E., Velez, M.: Selective laser sintering of 13 – 93 bioactive glass, in: Proceedings of 21st annual international solid freeform fabrication symposium - an additive manufacturing conference, pp. 504 – 512, (2010).
54 Kolan, K.C.R., Leu, M.C., Hilmas, G.E., Velez, M.: Effect of material, process parameters, and simulated body fluids on mechanical properties of 13 – 93 bioactive glass porous constructs made by selective laser sintering, J. Mech. Behav. Biomed. Mater., 13, 14 – 24, (2012).
55 Kolan, K.C.R., Leu, M.C., Hilmas, G.E., Brown, R.F., Velez, M.: Fabrication of 13 – 93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering, Biofabrication, 3, [2], 025004, (2011).
56 Goodridge, R.D., Wood, D.J., Ohtsuki, C., Dalgarno, K.W.: Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering, Acta Biomater., 3, [2], 221 – 231, (2007).
57 Wood, D.J., Dyson, J., Xiao, K., Dalgarno, K.W., Genever, P.: Processing and characterization of apatite-wollastonite porous scaffolds for bone tissue engineering, Key Eng. Mater., 361 – 363, 923 – 926, (2008).
58 Deisinger, U., Hamisch, S., Schumacher, M., Uhl, F., Detsch, R., Ziegler, G.: Fabrication of tailored hydroxyapatite Scaffolds: comparison between a direct and an indirect rapid prototyping technique, Key Eng. Mater., 361 – 363, 915 – 918, (2008).
59 Detsch, R., Dieser, I., Deisinger, U., Uhl, F., Hamisch, S., Ziegler, G., Lipps, G.: Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response, J. Biomed. Mater. Res. A, 92, [2], 493 – 503, (2010).
60 Eqtesadi, S., Motealleh, A., Miranda, P., Pajares, A., Lemos, A., Ferreira, J.M.F.: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering, J. Eur. Ceram. Soc., 34, [1], 107 – 118, (2014).
61 Liu, X., Rahaman, M.N., Hilmas, G.E., Bal, B.S.: Mechanical properties of bioactive glass (13 – 93) scaffolds fabricated by robotic deposition for structural bone repair, Acta Biomater., 9, [6], 7025 – 7034, (2013).
62 Deliormanli, A.M., Liu, X., Rahaman, M.N.: Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model, J. Biomater. Appl., 28, [5], 643 – 653, (2014).
63 Houmard, M., Fu, Q., Saiz, E., Tomsia, A.P.: Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering, J. Mater. Sci. Mater. M., 23, [4], 921 – 930, (2012).
64 Wu, C., Luo, Y., Cuniberti, G., Xiao, Y., Gelinsky, M.: Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability, Acta Biomater., 7, [6], 2644 – 2650, (2011).
65 Zhang, J., Zhao, S., Zhu, Y., Huang, Y., Zhu, M., Tao, C., Zhang, C.: Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration, Acta Biomater., 10, [5], 2269 – 2281, (2014).
66 Luo, Y., Wu, C., Lode, A., Gelinsky, M.: Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering, Biofabrication, 5, [1], 015005, (2013).
67 Poh, P.S.P., Hutmacher, D.W., Stevens, M.M., Woodruff, M.A.: Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration, Biofabrication, 5, [4], 045005, (2013).
68 Yang, S., Wang, J., Tang, L., Ao, H., Tan, H., Tang, T., Liu, C.: Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration, Colloid. Surface. B, 116, 72 – 80, (2014).
69 Calvert, P.: Inkjet printing for materials and devices, Chem. Mater., 13, [10], 3299 – 3305, (2001).
70 Monton, M.R.N., Forsberg, E.M., Brennan, J.D.: Tailoring Sol-Gel-derived silica materials for optical biosensing, Chem. Mater., 24, [5], 796 – 811, (2011).
Copyright
Göller Verlag GmbH