Articles
All articles | Recent articles
Functionally Graded Ceramic Structures by Direct Thermal Inkjet Printing
P. Gingter, A.M. Wätjen, M. Kramer, R. Telle
Department of Ceramics and Refractory Materials, RWTH Aachen University, Mauerstraße 5, 52064 Aachen, Germany
received August 15, 2014, received in revised form September 12, 2014, accepted October 1, 2014
Vol. 6, No. 2, Pages 119-124 DOI: 10.4416/JCST2014-00033
Abstract
Aqueous inks based on fine alumina and zirconia powder (3Y-TZP) with a solids content of 21 vol% were developed and adapted to a direct inkjet printing (DIP) system by optimizing the solids content, surface tension and viscosity of the inks. Using different thermal printheads for alumina and 3Y-TZP ink, dispersion ceramics and functionally graded materials (FGM) were generated via precise dropwise combination of materials on a substrate. Green and sintered specimens feature high density and accuracy with regard to drop positioning, which underlines the high potential of DIP for the fabrication of functionally graded ceramic structures.
Download Full Article (PDF)
Keywords
Direct inkjet printing, suspensions, functionally graded materials, ZrO2, Al2O3
References
1 Erasenthiran, P., Beal, V.E.: Functionally graded materials. in: rapid manufacturing: an industrial revolution for the digital age. Wiley-VCH, Weinheim, Germany, 2006.
2 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally graded materials: design, processing and applications. Kluwer Academic Publishers, Boston, MA, 1999.
3 Oxman, N.: Variable property rapid prototyping, Virtual. Phys. Prototyp., 6, 3 – 31, (2011).
4 Markovića, S., Jovalekićb, Č., Veselinovića, L., Mentusc, S., Uskoković, D.: Electrical properties of barium titanate stannate functionally graded materials, J. Eur. Ceram. Soc., 30, [6], 1427 – 36, (2010).
5 Ruys, A.J., Popova, E.B., Suna, D., Russella, J.J., Murray, C.C.J.: Functionally graded electrical/thermal ceramic systems, J. Eur. Ceram. Soc., 21, [10 – 11], 2025 – 9, (2001).
6 Ortmann, C., Oberbach, T., Richter, H., Puhlfürss, P.: Preparation and characterization of ZTA bioceramics with and without gradient in composition, J. Eur. Ceram. Soc., 32, [4], 777 – 85, (2012).
7 De Aza, A.H., Chevalier, J., Fantozzi, G., Schehl, M., Torrecillas, R.: Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials, 23, [3], 937 – 45, (2002).
8 Sun, L., Sneller, A., Kwon, P.: Fabrication of alumina/zirconia functionally graded material: from optimization of processing parameters to phenomenological constitutive models, Mat. Sci. Eng. A-Struc., 488, [1 – 2], 31 – 8, (2008).
9 He, X., Du, H., Wang, W., Jing, W., Liu, C.: Fabrication of ZrO2-SUS functionally graded materials by slip casting, Key. Eng. Mater., 368 – 372, 1823 – 4, (2008).
10 Askari, E., Mehrali, M., Metselaar, I.H., Kadri, N.A., Rahman, M.M.: Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition, J. Mech. Behav. Biomed. Mater., 12, 144 – 50, (2012).
11 Gurauskis, J., Sánchez-Herencia, A.J., Baudín, C.: Laminated ceramic structures within alumina/YTZP system obtained by low pressure joining, Key. Eng. Mater., 333, 219 – 22, (2007).
12 Cicha, K., Li, Z., Stadlmann, K., Ovsianikov, A., Markut-Kohl, R., Liska, R., Stampfl, J.: Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy, J. Appl. Phys., 110, 1 – 5, (2011).
13 Bourell, D.L., Marcus, H.L., Barlow, J.W., Beamann, J.J.: Selective laser sintering of metals and ceramics, Int. J. Powder. Metall., 28, 369 – 81, (1992).
14 Sachs, E.M., Cima, M.J., Cornie, J.: Three-dimensional printing: rapid tooling and prototypes directly from a CAD model, CIRP. Ann. Manuf. Technol., 39, 201 – 4, (1990).
15 Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano III, J.: Direct ink writing of three-dimensional ceramic structures, J. Am. Ceram. Soc., 89, [12], 3599 – 609, (2006).
16 Özkol, E., Ebert, J., Uibel, K., Wätjen, A.M., Telle, R.: Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer, J. Eur. Ceram. Soc., 29, [3], 403 – 9, (2009).
17 Zhao, X., Evans, J.R.G., Edirisinghe, M.J., Song, J.H.: Ink-jet printing of ceramic pillar arrays, J. Mater. Sci., 37, 1987 – 92, (2002).
18 Derby, B., Reis, N.: Inkjet printing of highly loaded particulate suspensions, MRS Bull., 28, 815 – 8, (2003).
19 Lejeune, M., Chartier, T., Dossou-Yovo, C., Noguera, R.: Ink-jet printing of ceramic micro pillar arrays, J. Eur. Ceram. Soc., 29, 905 – 11, (2009).
20 Magdassi, S.: The chemistry of inkjet inks. World Scientific Publishing Co., Singapore, 2010.
21 Özkol, E., Ebert, J., Telle, R.: An experimental analysis of the influence of the ink properties on the drop formation for direct thermal inkjet printing of high solid content aqueous 3Y-TZP suspensions, J. Eur. Ceram. Soc., 30, [7], 1669 – 78, (2010).
22 Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W., Derby, B.: Ink-jet printing of wax-based alumina suspensions, J. Am. Ceram. Soc., 84, [11], 2514 – 20, (2001).
23 Noguera, R., Lejeune, M., Chartier, T.: 3D fine scale ceramic components formed by ink-jet prototyping process, J. Eur. Ceram. Soc., 25, [12], 2055 – 9, (2005).
24 Özkol, E.: Rheological characterization of aqueous 3Y-TZP inks optimized for direct thermal ink-jet printing of ceramic components, J. Am. Ceram. Soc., 96, [4], 1124 – 30, (2013).
25 Cappi, B., Ebert, J., Telle, R.: Rheological properties of aqueous Si3N4 and MoSi2 suspensions tailor-made for direct inkjet printing, J. Am. Ceram. Soc., 94, 111 – 6, (2011).
26 Zhao, X., Evans, J.R.G., Edirisinghe, M.J., Song, J.H.: Direct ink-jet printing of vertical walls, J. Am. Ceram. Soc., 85, [8], 2113 – 5, (2002).
27 Cappi, B., Özkol, E., Ebert, J., Telle, R.: Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure, J. Eur. Ceram. Soc., 28, [13], 2625 – 8, (2008).
28 Ebert, J., Özkol, E., Telle, R., Fischer, H., Uibel, K.: Direct inkjet printing: A versatile method of complex shape manufacturing. In: Proceedings of the 10th European Ceramic Society Conference. Göller Verlag GmbH, Baden-Baden, Germany, 2008.
29 Özkol, E., Wätjen, A.M., Bermejo, R., Deluca, M., Ebert, J., Danzer, R., Telle, R.: Mechanical characterisation of miniaturised direct inkjet printed 3Y-TZP specimens for microelectronic applications, J. Eur. Ceram. Soc., 30, [15], 3145 – 52, (2010).
30 Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., Fischer, H.: Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res., 88, [7], 673 – 6, (2009).
31 Özkol, E., Zhang, W., Ebert, J., Telle, R.: Potentials of the "direct inkjet printing" method for manufacturing 3Y-TZP based dental restorations, J. Eur. Ceram. Soc., 32, [10], 2193 – 201, (2012).
32 Mott, M., Song, J.H., Evans, J.R.G.: Microengineering of ceramics by direct ink-jet printing, J. Am. Ceram. Soc., 82, [7], 1653 – 8, (1999).
33 Mott, M., Evans, J.R.G.: Zirconia/alumina functionally graded material made by ceramic ink jet printing, Mater. Sci. Eng., 271, 344 – 52, (1999).
34 Mohebi, M.M., Evans, J.R.G.: A Drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics, J. Comb. Chem., 4, [4], 267 – 74, (2002).
35 Wang, J., Shaw, L.L.: Fabrication of functionally graded materials via inkjet color printing, J. Am. Ceram. Soc., 89, [10], 3285 – 9, (2006).
36 Song, J.H., Nur, H.M.: Defects and prevention in ceramic components fabricated by inkjet printing, J. Mater. Proc. Technol., 155, [6], 1286 – 92, (2004).
Copyright
Göller Verlag GmbH