Articles
All articles | Recent articles
Hysteresis upon Repeated Cycling through the Beta-Alpha Cristobalite Transformation
R. C. Breneman, J. W. Halloran
University of Michigan, 2300 Hayward, Ann Arbor, MI 48105, USA
received November 9, 2014, received in revised form January 7, 2015, accepted January 23, 2015
Vol. 6, No. 1, Pages 55-62 DOI: 10.4416/JCST2014-00048
Abstract
Beta-to-alpha transformation in cristobalite was examined by means of differential scanning calorimetry (DSC) to address how enthalpy, transformation hysteresis, and transformation onset temperature change upon repeated thermal cycling. Cristobalite powder was repeatedly cycled from 190 – 280 °C and back, cycling through the first-order displacive transformation between high-temperature, cubic beta-cristobalite and low-temperature, tetragonal alpha-cristobalite. The enthalpy of the transformation did not change with cycling, but the exothermic beta-to-alpha enthalpy at 1560 ± 27 J/mol was larger than endothermic alpha-to-beta enthalpy at 1260 ± 8 J/mol. Transformation onset temperatures and hysteresis varied systematically with repeated cycling of the transformation. The onset temperature of the beta-to-alpha transformation increased logarithmically with cycling, resulting in reduced under-cooling and hysteresis. The onset temperature of the alpha-to-beta transformation decreased logarithmically with cycling, resulting in reduced super-heating and hysteresis. The reduced hysteresis indicates a lowered barrier to transformation. We propose this reduced hysteresis indicates particle refinement through microfracture caused by the -4.9 % volume change on the beta-to-alpha transformation. This is supported by the observation of powder size dependence. Powder with particles finer than 38 µm had no change on cycling, suggesting 38 µm is below the critical minimum size.
Download Full Article (PDF)
Keywords
Cristobalite, silica, phase transformation, hysteresis
References
1 Sosman, R.B.: The phases of silica, Rutgers University Press, New Brunswick, 1965.
2 Wyckoff. R.W.G.: The crystal structure of the high temperature form of cristobalite, Am. J. Sci., 9, 448 – 459, (1925).
3 Nieuwenkamp, W.: On the structure of beta cristobalite, Z. Kristall., 96, 454 – 458, (1937).
4 Peacor, D.R.: High-temperature single crystal study of cristobalite inversion, Z. Kristall., 138, 274 – 98, (1973).
5 Hill, V.G., Roy, R.: Silica structure studies. 5. the variable inversion in cristobalite, J. Am. Ceram. Soc., 41, 532 – 537, (1958).
6 Pabst, W., Gregorova, E.: Elastic properties of silica polymorphs – a review, Ceram. Silikaty, 57, 167 – 184, (2013).
7 Danby, D.E., Llewellin, E.W., Horwell, C.J., Williamson, B.J., Najorka, J., Cressey, G., Carpenter, M.: The α-β phase transition in volcanic cristobalite, J. Appl. Cristallogr., 47, 1204 – 1215, Part 4, (2014).
8 Wright, A.F., Leadbetter, A.J.: Structures of beta-cristobalite phases of SiO2 and AlPO4, Philos. Mag., 31, 1391 – 1401, (1975).
9 Withers, R.L, Thompson, J.G., Welberry, T.R.: The structure and microstructure of alpha-cristobalite and its relationship to beta-cristobalite, Phys. Chem. Miner., 16, 517 – 523, (1989).
10 Withers, R.L., Welberry, T.R., Hua, G.L., Thompson, J.G., Hyde, B.G.: A transmission electron-microscopy study of cristobalite, Phase Transit., 16, 41 – 45, (1989).
11 Spearing, D.R., Farnan, I., Stebbins, J.F.: Dynamics of the alpha-beta phase-transitions in quartz and cristobalite as observed by in-situ high-temperature 29Si NMR and 17O NMR, Phys. Chem. Miner., 19, 307 – 321, (1992).
12 Dove, M.T., Keen, D.A., Hannon, A.C., Swainson, I.P.: Direct measurement of the Si-O bond length and orientational disorder in the high-temperature phase of cristobalite, Phys. Chem. Miner., 24, 311 – 317, (1997).
13 Swainson, I.P., Dove, M.T., Palmer, D.C.: Infrared and raman spectroscopy studies of the alpha-beta phase transition in cristobalite, Phys. Chem. Miner., 30, 353 – 365, (2003).
14 Schmahl, W.W., Swainson, I.P., Dove, M.T., Graemebarber, A.: Landau free-energy and order parameter behavior of the alpha/beta phase-transition in cristobalite, Z. Kristall., 201, 125 – 145, (1992).
15 Swainson, I.P., Dove, M.T.: Molecular dynamics simulation of alpha-cristobalite and beta-cristobalite, J. Phys.-Condes. Matter, 7, 1771 – 1788, (1995).
16 Huang, L., Durandurdu, M., Kieffer, J.: Transformation pathways of silica under pressure, Nat. Mater., 5, 977 – 981, (2006).
17 Yuan, F.L., Huang, L.P.: α-β transformation and disorder in β-cristobalite silica, Phys. Rev. B, 85, 134114, (2012).
18 Cope, E.R., Dove, M.T.: Evaluation of domain models for beta-cristobalite from the pair distribution function, J. Phys.-Condes. Matter, 22, 125401, (2010).
19 Cohen, L.H., Klement, W.: Differential thermal-analysis investigation of high-low cristobalite inversion under hydrostatic-pressure to 7 kbar, J. Am. Ceram. Soc., 58, 206 – 208, (1975).
20 Parise, J.B., Yeganehhaeri, A., Weidner, D.J., Jorgensen, J.D., Saltzberg, M.A.: Pressure-induced phase transition and pressure dependence of crystal-structure in low (alpha) and Ca/Al-doped cristobalite, J. Appl. Phys., 75, 1361 – 1367, (1994).
21 Lee, S.J., Lee, S.H.: Behavior of induced phase transformation of beta-cristobalite by shear stress, J. Mater. Sci. Lett., 20, 135 – 137, (2001).
22 Chao, C.H., Lu, H.Y.: Stress-induced beta-alpha-cristobalite phase transformation in (Na2O+Al2O3)-codoped silica, Mater. Sci. Eng. A, 328, 267 – 276, (2002).
23 Schmahl, W.W.: Athermal transformation behavior and thermal hysteresis at the SiO2-Alpha/Beta-cristobalite phase-transition, Eur. J. Mineral., 5, 377 – 380, (1993).
24 Schmahl, W.W.: Hysteresis and phase coexistence at the SiO2 alpha/beta-cristobalite phase transition and the pitfalls of PSD calibration, Mater. Sci. Forum, 133 – 136, 609 – 614, (1993).
25 Breneman, R.C., Halloran, J.W.: Kinetics of cristobalite formation in sintered silica, J. Am. Ceram. Soc., 97, 2272 – 2278, (2014).
26 Wang, L.Y., Hon, M.H.: The effect of cristobalite seed on the crystallization of fused slica based ceramic core – a kinetic study, Ceram. Int., 21, 187 – 93, (1995).
27 Lee, S.J., Lee, C.H.: Critical size effect for chemically doped beta-cristobalite transformation, Mater. Lett., 45, 175 – 179, (2000).
28 Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., Tequi, C.: Thermodynamic properties of quartz, cristobalite, and amorphous SiO2, Geochimica Cosmochim. Ac., 46, 2639 – 2658, (1982).
29 Thompson, A.B., Wennemer, M.: Heat capacities and inversions in tridymite, cristobalite, and tridymite-cristobalite mixtures, Am. Mineral., 64, 1018 – 1026, (1979).
30 Sabatier, G.: Heat of transition of low- to high-temperature forms of quartz, tridymite and cristobalite, (in French), Bull. Soc. Frances Mineral Cristallography, 80, 337 – 344, (1957).
31 Butler, M.A., Dyson, D.J.: The quantification of different forms of cristobalite in devitrified alumino-silicate ceramic fibres, J. Appl. Crystallogr., 30, 467 – 475, (1997).
32 McCormick, P.J., Liu, Y.N.: Thermodynamic analysis of the martensitic transformation in NiTi 2: effect of transformation cycling, Acta Metall. Mater., 42, 2407 – 2413, (1994).
33 Pelton, A.R., Huang, G.H., Moine, P., Sinclair, R.: Effects of thermal cycling on microstructure and properties in nitinol, Mater. Sci. Eng. A, 532, 130 – 138, (2012).
34 Thomas, E.S., Thompson, J.G., Withers, R.L., Sterns, M., Xiao, Y.H., Kirkpatrick, R.J.: Further investigation of the stabilization of beta-cristobalite, J. Am. Ceram. Soc., 77, 49 – 56, (1994).
35 Salzbrenner, R.J., Cohen, M.: On the thermodynamics of thermoelastic martensitic transformations, Acta Metall., 27, 739 – 748, (1979).
Copyright
Göller Verlag GmbH