• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

A High-Temperature, Short-Duration Method of Fabricating Surrogate Fuel Microkernels for Carbide-Based TRISO Nuclear Fuels

G. Vasudevamurthy, A. Radecka, C. Massey

High Temperature Materials Laboratory, Virginia Commonwealth University, Richmond, VA 23248, USA

received September 23, 2014, received in revised form December 8, 2014, accepted January 13, 2015

Vol. 6, No. 1, Pages 25-30   DOI: 10.4416/JCST2014-00041

Abstract

High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

Download Full Article (PDF)

Keywords

Ceramic nuclear fuel, HTGR, fabrication, actinides, fast reactor

References

1 Degueldre, C., Paratte, J.M.: Concepts for an inert matrix fuel, an overview, J. Nucl. Mater., 274, 1 – 6, (1999).

2 Degueldre, C., Yamashita, T.: Inert matrix fuel strategies in the nuclear fuel cycle: status of the initiative efforts at the 8th inert matrix fuel workshop, J. Nucl. Mater., 319, 1 – 5, (2003).

3 Meyer, M.K., Fielding, R., Gan, J.: Fuel development for gas-cooled fast reactors, J. Nucl. Mater., 371, 281 – 287, (2007).

4 Perkó, Z., Kloosterman, J.L., Fehér, S.: Minor actinide transmutation in GFR600, Nucl. Technol., 177, 83 – 97, (2012).

5 Stainsby, R., Peers, K., Mitchell, C., Poette, C., Mikityuk, K., Somers, J.: Gas cooled fast reactor research in europe, Nucl. Eng. Des., 241, 3481 – 3489, (2011).

6 Stainsby, R., Garnier, J.C., Guedeney, P., Mikityuk, K., Mizuno, T., Poette, C., Pouchon, M., Rini, M., Somers, J., Touron, E.: The Generation IV Gas-cooled Fast Reactor. Paper 11321, Proc. ICAPP 2011 Nice, France, 2011 May.

7 Fielding, R., Meyer, M.K., Jue, J., Gan, J.: Gas-cooled fast reactor fuel fabrication, J. Nucl. Mater., 371, 243 – 249, (2007).

8 Meyer, M.K.: A report on the feasibility of GFR fuel for Minor Actinide Management, Argonne National Laboratory. 2004.

9 Stratton, R.W., Ledergerber, G., Ingold, F., Latimer, T.W., Chidester, K.M.: Fuel fabrication processes, design and experimental conditions for the joint US-Swiss mixed carbide test in FFTF (AC-3 test). J. Nucl. Mater., 204, 39 – 49, (1993).

10 Stinton, D.P., Lackey, W.J., Spence R.D.: Production of spherical UO2/UC2 for nuclear fuel application using thermo chemical principles, J. Am. Ceram. Soc., 65, 321 – 324, (1982).

11 Mukerjee, S.K., Dehadraya, J., Vaidya, V., Sood, D.: Kinetic study of the carbo-thermic synthesis of uranium mono-carbide microspheres, J. Nucl. Mater., 172, 37 – 46, (1990).

12 Yamagishi, S.: A new internal gelation process for fuel microsphere preparation without cooling initial solutions, J. Nucl. Mater., 254, 14 – 21, (1998).

13 Pai, V.R., Mukerjee, S.K., Vaidya, V.N.: Fabrication of (Th,U)O2 pellets containing 3 mol % of uranium by gel pelletisation technique, J. Nucl. Mater., 325, 159 – 168, (2004).

14 Ganguly, C., Hegde, P.V.: Sol-gel microsphere pelletisation process for fabrication of fuel pellets for the prototype fast breeder reactor in india, J. Sol-Gel. Sci. & Tech., 9, 285 – 294, (1997).

15 Hunt, R.D., Collins, J.L.: Uranium kernel formation via internal gelation, Radiochem. Acta, 92, 909 – 915, (2004).

16 Trybus, C.L., Sanecki, J.E., Henslee, S.P.: Casting of metallic fuel containing minor actinide additions, J. Nucl. Mater., 204, 50 – 55, (1993).

17 Trybus, C.L.: Injection casting of U-Zr-mn, surrogate alloy for U- Pu- Zr- Am- Np., J. Nucl. Mater., 224, 305 – 306, (1995).

18 Hiernaut J.P., Ronchi, C.: Curium vaporization from (Cm,Pu)2O3 and from irradiated oxide fuel: mass spectrometric measurements, J. Nucl. Mater., 334, 133 – 138, (2004).

19 Nakajima, K., Arai, Y., Suzuki, Y.: Vaporization behavior of (Np,Pu)N, J. Alloy.Compd., 271, 666 – 669, (1998).

20 Ogawa, T., Ohmichi, T., Maeda, A., Arai, Y., Suzuki, Y.: Vaporization behavior of (Pu,Am)N, J. Alloy.Compd., 224, 55 – 59, (1995).

21 Ohmichi, T., Suzuki, Y., Arai, Y., Sasayama, T., Maeda, A.: Mass spectroscopic study on the carbothermic reduction of plutonium dioxide, J. Nucl. Mater., 139, 253 – 260, (1986).

22 Cabanillas, E.D., López, M., Pasqualini, E.E., Cirilo Lombardo, D.J.: Production of uranium-molybdenum particles by spark-erosion, J. Nucl. Mater., 324, 1 – 5, (2004).

23 Hsu, M.S., Meyers, M.A., Berkowitz, A.: Synthesis of nano-crystalline TiC by spark erosion, Scripta Metall. Mater., 32, 805 – 808, (1995).

24 Berkowitz, A.E., Harper, H., Smith, D.J., Hu, H., Jiang, Q., Solomon, V.C., Radousky, H.B.: Hollow metallic microspheres produced by spark erosion, Appl. Phys. Lett., 85, 940 – 942, (2004).

25 Nersessian, N., Siu, W.O., Carman, G.P., Choe, W., Radousky, H.B.: Hollow and solid spherical magnetostrictive particulate composites, J. Appl. Phys., 96, 3362 – 3365, (2004).

26 Wan, H., Berkowitz, A.E.: Structure and magnetic properties of nd-fe-B fine particles produced by spark erosion, Scripta Metall. Mater., 32, 1827 – 1831, (1995).

27 Kočová, M., Pizúrová, N., Süllow, S., Schneeweiss, O.: Composition and tempering of Fe-C and Fe-Ni-C fine particles prepared by spark erosion, Mater. Sci. Eng., 190, 259 – 265, (1995).

28 Sato, T., Yasuda, S., Yoshioka, T., Okuwaki, A.: Synthesis of gamma-iron by spark discharge method in liquid ammonia, J. Mater. Sci. Lett., 14, 1430 – 1432, (1995).

29 Sato, T., Usuki, K., Okuwaki, A., Goto, Y.: Synthesis of metal nitrides and carbide powders by spark discharge method in liquid media, J. Mater. Sci., 27, 3879 – 3882, (1992).

30 Haynes, W.M.: CRC Handbook of chemistry and physics: 92nd Edition, Taylor and Francis Publishing, 2011.

31 Stawicki, M.A.: Benchmarking of the MIT high temperature gas-cooled reactor TRISO coated particle fuel performance model, PhD Dissertation, Mass. Inst. of Tech., 2006.

32 Hakon, W.: Volume, shape and roundness of quartz particles, J. Geol., 43, 250 – 280, (1935).

33 Choi, H., Rimpault, G., Bosq, J.C.: A physics study of a gas-cooled fast reactor, Nucl. Sci. Eng., 154, 204 – 218, (2006).

34 Sohn, H.Y., Moreland, C.: The effect of particle size distribution on packing density, Can. J. Chem. Eng., 46, 162 – 167, (1968).

35 Sawa, K., Suzuki, S., Shiozawa, S.: Safety criteria and quality control of HTTR fuel, Nucl. Eng. Des., 208, 305 – 313, (2001).

36 Del Cul, G.D., Mattus, C.H., Icenhour, A.S., Felker, L.K., Williams, D.F.: Fuel fabrication development for surrogate sphere-pac rodlet. ORNL/TM-2005/108. 2005.

37 Arai, T., Satoh, S.: Analytical studies on the mechanical behavior of TRISO-2 coated fuel particles during irradiation, JAERI-M 5008. 1972

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH