Articles
All articles | Recent articles
A High-Temperature, Short-Duration Method of Fabricating Surrogate Fuel Microkernels for Carbide-Based TRISO Nuclear Fuels
G. Vasudevamurthy, A. Radecka, C. Massey
High Temperature Materials Laboratory, Virginia Commonwealth University, Richmond, VA 23248, USA
received September 23, 2014, received in revised form December 8, 2014, accepted January 13, 2015
Vol. 6, No. 1, Pages 25-30 DOI: 10.4416/JCST2014-00041
Abstract
High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.
Download Full Article (PDF)
Keywords
Ceramic nuclear fuel, HTGR, fabrication, actinides, fast reactor
References
1 Degueldre, C., Paratte, J.M.: Concepts for an inert matrix fuel, an overview, J. Nucl. Mater., 274, 1 – 6, (1999).
2 Degueldre, C., Yamashita, T.: Inert matrix fuel strategies in the nuclear fuel cycle: status of the initiative efforts at the 8th inert matrix fuel workshop, J. Nucl. Mater., 319, 1 – 5, (2003).
3 Meyer, M.K., Fielding, R., Gan, J.: Fuel development for gas-cooled fast reactors, J. Nucl. Mater., 371, 281 – 287, (2007).
4 Perkó, Z., Kloosterman, J.L., Fehér, S.: Minor actinide transmutation in GFR600, Nucl. Technol., 177, 83 – 97, (2012).
5 Stainsby, R., Peers, K., Mitchell, C., Poette, C., Mikityuk, K., Somers, J.: Gas cooled fast reactor research in europe, Nucl. Eng. Des., 241, 3481 – 3489, (2011).
6 Stainsby, R., Garnier, J.C., Guedeney, P., Mikityuk, K., Mizuno, T., Poette, C., Pouchon, M., Rini, M., Somers, J., Touron, E.: The Generation IV Gas-cooled Fast Reactor. Paper 11321, Proc. ICAPP 2011 Nice, France, 2011 May.
7 Fielding, R., Meyer, M.K., Jue, J., Gan, J.: Gas-cooled fast reactor fuel fabrication, J. Nucl. Mater., 371, 243 – 249, (2007).
8 Meyer, M.K.: A report on the feasibility of GFR fuel for Minor Actinide Management, Argonne National Laboratory. 2004.
9 Stratton, R.W., Ledergerber, G., Ingold, F., Latimer, T.W., Chidester, K.M.: Fuel fabrication processes, design and experimental conditions for the joint US-Swiss mixed carbide test in FFTF (AC-3 test). J. Nucl. Mater., 204, 39 – 49, (1993).
10 Stinton, D.P., Lackey, W.J., Spence R.D.: Production of spherical UO2/UC2 for nuclear fuel application using thermo chemical principles, J. Am. Ceram. Soc., 65, 321 – 324, (1982).
11 Mukerjee, S.K., Dehadraya, J., Vaidya, V., Sood, D.: Kinetic study of the carbo-thermic synthesis of uranium mono-carbide microspheres, J. Nucl. Mater., 172, 37 – 46, (1990).
12 Yamagishi, S.: A new internal gelation process for fuel microsphere preparation without cooling initial solutions, J. Nucl. Mater., 254, 14 – 21, (1998).
13 Pai, V.R., Mukerjee, S.K., Vaidya, V.N.: Fabrication of (Th,U)O2 pellets containing 3 mol % of uranium by gel pelletisation technique, J. Nucl. Mater., 325, 159 – 168, (2004).
14 Ganguly, C., Hegde, P.V.: Sol-gel microsphere pelletisation process for fabrication of fuel pellets for the prototype fast breeder reactor in india, J. Sol-Gel. Sci. & Tech., 9, 285 – 294, (1997).
15 Hunt, R.D., Collins, J.L.: Uranium kernel formation via internal gelation, Radiochem. Acta, 92, 909 – 915, (2004).
16 Trybus, C.L., Sanecki, J.E., Henslee, S.P.: Casting of metallic fuel containing minor actinide additions, J. Nucl. Mater., 204, 50 – 55, (1993).
17 Trybus, C.L.: Injection casting of U-Zr-mn, surrogate alloy for U- Pu- Zr- Am- Np., J. Nucl. Mater., 224, 305 – 306, (1995).
18 Hiernaut J.P., Ronchi, C.: Curium vaporization from (Cm,Pu)2O3 and from irradiated oxide fuel: mass spectrometric measurements, J. Nucl. Mater., 334, 133 – 138, (2004).
19 Nakajima, K., Arai, Y., Suzuki, Y.: Vaporization behavior of (Np,Pu)N, J. Alloy.Compd., 271, 666 – 669, (1998).
20 Ogawa, T., Ohmichi, T., Maeda, A., Arai, Y., Suzuki, Y.: Vaporization behavior of (Pu,Am)N, J. Alloy.Compd., 224, 55 – 59, (1995).
21 Ohmichi, T., Suzuki, Y., Arai, Y., Sasayama, T., Maeda, A.: Mass spectroscopic study on the carbothermic reduction of plutonium dioxide, J. Nucl. Mater., 139, 253 – 260, (1986).
22 Cabanillas, E.D., López, M., Pasqualini, E.E., Cirilo Lombardo, D.J.: Production of uranium-molybdenum particles by spark-erosion, J. Nucl. Mater., 324, 1 – 5, (2004).
23 Hsu, M.S., Meyers, M.A., Berkowitz, A.: Synthesis of nano-crystalline TiC by spark erosion, Scripta Metall. Mater., 32, 805 – 808, (1995).
24 Berkowitz, A.E., Harper, H., Smith, D.J., Hu, H., Jiang, Q., Solomon, V.C., Radousky, H.B.: Hollow metallic microspheres produced by spark erosion, Appl. Phys. Lett., 85, 940 – 942, (2004).
25 Nersessian, N., Siu, W.O., Carman, G.P., Choe, W., Radousky, H.B.: Hollow and solid spherical magnetostrictive particulate composites, J. Appl. Phys., 96, 3362 – 3365, (2004).
26 Wan, H., Berkowitz, A.E.: Structure and magnetic properties of nd-fe-B fine particles produced by spark erosion, Scripta Metall. Mater., 32, 1827 – 1831, (1995).
27 Kočová, M., Pizúrová, N., Süllow, S., Schneeweiss, O.: Composition and tempering of Fe-C and Fe-Ni-C fine particles prepared by spark erosion, Mater. Sci. Eng., 190, 259 – 265, (1995).
28 Sato, T., Yasuda, S., Yoshioka, T., Okuwaki, A.: Synthesis of gamma-iron by spark discharge method in liquid ammonia, J. Mater. Sci. Lett., 14, 1430 – 1432, (1995).
29 Sato, T., Usuki, K., Okuwaki, A., Goto, Y.: Synthesis of metal nitrides and carbide powders by spark discharge method in liquid media, J. Mater. Sci., 27, 3879 – 3882, (1992).
30 Haynes, W.M.: CRC Handbook of chemistry and physics: 92nd Edition, Taylor and Francis Publishing, 2011.
31 Stawicki, M.A.: Benchmarking of the MIT high temperature gas-cooled reactor TRISO coated particle fuel performance model, PhD Dissertation, Mass. Inst. of Tech., 2006.
32 Hakon, W.: Volume, shape and roundness of quartz particles, J. Geol., 43, 250 – 280, (1935).
33 Choi, H., Rimpault, G., Bosq, J.C.: A physics study of a gas-cooled fast reactor, Nucl. Sci. Eng., 154, 204 – 218, (2006).
34 Sohn, H.Y., Moreland, C.: The effect of particle size distribution on packing density, Can. J. Chem. Eng., 46, 162 – 167, (1968).
35 Sawa, K., Suzuki, S., Shiozawa, S.: Safety criteria and quality control of HTTR fuel, Nucl. Eng. Des., 208, 305 – 313, (2001).
36 Del Cul, G.D., Mattus, C.H., Icenhour, A.S., Felker, L.K., Williams, D.F.: Fuel fabrication development for surrogate sphere-pac rodlet. ORNL/TM-2005/108. 2005.
37 Arai, T., Satoh, S.: Analytical studies on the mechanical behavior of TRISO-2 coated fuel particles during irradiation, JAERI-M 5008. 1972
Copyright
Göller Verlag GmbH