• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Hydrothermal Synthesis of ZnAlGaO4 and the Effect of the Post-Heat Treatment on the Enhancement in Crystallinity

K. Sakoda, M. Hirano

Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yakusa, Toyota, 470 – 0392 Japan

received August 1, 2014, received in revised form October 31, 2014, accepted December 16, 2014

Vol. 6, No. 1, Pages 9-16   DOI: 10.4416/JCST2014-00031

Abstract

Spinel-type nanoparticles with a ZnAlGaO4 composition were directly synthesized from the aqueous precursor solutions of ZnSO4, Al(NO3)3 and Ga(NO3)3 under hydrothermal conditions at 150 ∼ 240 °C for 5 h in the presence of tetramethylammonium hydroxide. The resulting changes in the structure and properties of as-prepared ZnAlGaO4 spinel in the course of heating in air up to 1000 °C were investigated. The cell size of the as-prepared spinel phase slightly decreased as the hydrothermal treatment temperature increased from 150 to 240 °C. The nano-sized crystallite at around 8 nm of as-prepared spinel phase formed at 180 °C was maintained up to 600 °C and grew to 44 nm as the heat-treatment temperature rose from 600 to 1000 °C. The cell size of the spinel nanoparticles slightly and gradually changed during heat treatment up to 800 °C, and it almost accorded with the ideal value reported in the reference after heat treatment higher than 800 °C. The UV-blue light emission centered at 360 nm with relatively high intensity that was observed in the as-prepared spinel under excitation at 270 nm changed depending on the heat-treatment temperature. After heating at 800 °C, the spinel showed broad-band emission centered at around 430 nm.

Download Full Article (PDF)

Keywords

Oxides, chemical synthesis, spinel, crystal structure, optical properties

References

1 Rao, C.N.R., Vivekchand, S.R.C., Biswasa, K., Govindaraja, A.: Synthesis of inorganic nanomaterials, Dalton T., 34, 3728 – 49, (2007).

2 Dawson, W.J.: Hydrothermal synthesis of advanced ceramic powders, Am. Ceram. Soc. Bull., 67, 1673 – 78, (1988).

3 Hirano, M., Morikawa, H., Inagaki, M., Toyoda, M.: Direct synthesis of new zircon-type ZrGeO4 and Zr(Ge, Si)O4 solid solutions, J. Am. Ceram. Soc., 85, 1915 – 20, (2002).

4 Hirano, M., Matsushima, K.: Photoactive and adsorptive niobium-doped anatase (TiO2) nanoparticles: Influence of hydrothermal conditions on their morphology, structure, and properties, J. Am. Ceram. Soc., 89, 110 – 17, (2006).

5 Hirano, M., Dozono, H.: Luminescence nanocrystals in the rare-earth niobate-zirconia system formed via hydrothermal method, J. Solid State Chem., 204, 335 – 40, (2013).

6 Minami, T.: New n-type transparent conductive oxides, MRS Bull., 25, 38 – 44, (2000).

7 Omata, T., Ueda, N., Ueda, K., Kawazoe, H.: New ultraviolet-transport electroconductive oxide, ZnGa2O4 spinel, Appl. Phys. Lett., 64, 1077 – 78, (1994).

8 Shea, L.E., Datta, R.K., Brown, Jr., J.J., Photoluminescence of Mn2+-activated ZnGa2 O 4, J. Electrochem. Soc., 141, 1950 – 54, (1994).

9 Kho, J.-G., Park, H.-D., Kim, D.-P.: Photoluminescence of the Mn-doped ZnGa2O4 phosphors prepared by coprecipitation of metals salts, Bull. Korean. Chem. Soc., 20, 1035 – 39, (1999).

10 Itoh, S., Toki, H., Sato, Y. Morimoto, K., Kishino, T.: The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence, J. Electrochem. Soc., 138, 1509 – 12, (1991).

11 Tran, T.K., Park, W., Tomm, J.W., Wagner, B.K., Jacobsen, S.M., Summers, C.J., Yocom, P.N., McClelland, S.K.: Photoluminescence properties of ZnGa2O4:Mn powder phosphors, J. Appl. Phys., 78, 5691 – 95, (1995).

12 Minami, T., Kuroi, Y., Takata, S.: Preparation of ZnGa2O4: mn phosphor thin films as emitting lays for electroluminescent devices, J. Vac. Sci. Technol. A, 14, 1736 – 40, (1996).

13 Zhang, X., Huang, J., Ding, K., Hou, Y., Wang, X., Fu, X.: Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area, Environ. Sci. Technol., 43, 5947 – 51, (2009).

14 Chen, X.Y., Ma, C., Zhang, Z.J., Wang, B.N.: Ultrafine gahnite (ZnAl2O4) nanocrystals: hydrothermal synthesis and photoluminescent properties, Mater. Res. Bull., 45, 1889 – 93, (2010).

15 Mu, L., Wan, J., Wang, Z., Gao, Y., Qian, Y.: Mn-doped zinc aluminate nanoparticles: hydrothermal synthesis, characterization, and photoluminescence properties, J. Nanosci. Nanotechno., 6, 863 – 67, (2006).

16 Phani, A.R., Passacantando, M., Santucci, S.: Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique, Mater. Chem. Phys., 68, 66 – 71, (2001).

17 Sampsth, S.K., Cordaro, J.F.: Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinel, J. Am. Ceram. Soc., 81, 649 – 54, (1998).

18 Li, X., Zhu, Z., Zhao, Q., Wang, L.: Photocatalytic degradation of gaseous toluene over ZnAlO4 prepared by different methods: A comparative study, J. Hazard. Mater., 186, 2089 – 96, (2011).

19 Shioyama, T.K.: Alcohol dehydration employing a zinc aluminate catalyst, U. S. Patent 4,260,845, (1981).

20 Aquilar-Rios, G., Valenzuela, M., Salas, P., Armendariz, H., Bosch, P., Del Toro, G., Sila, R., Bertin, V., Castillo, S., Schifter, A.I.: Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate, Appl. Catal. A: General, 127, 65 – 75, (1995).

21 El-Nabarany, T., Attia, A.A., Alayn, M.N.: Effect of thermal treatment on the structural, textural and catalytic properties of the ZnO-Al2O3 system, Mater. Lett., 24, 319 – 25, (1995).

22 Roesky, R., Weiguny, J., Bestgen, H., Dingerdissen, U.: An improved synthesis method for indenes and styrenes by use of a ZnO/Al2O3 spinel catalyst, Appl. Catal. A: General, 176, 213 – 20, (1999).

23 Yan, Z., Takei, H.: Flux growth of single crystals of spinel ZnGa2O4 and CdGa2O4, J. Cryst. Growth, 171, 131 – 35, (1997).

24 Yan, Z., Takei, H., Kawazoe, H.: Electrical conductivity in transparent ZnGa2O4: Reduction and surface-layer structure transformation, J. Am. Ceram. Soc., 81, 180 – 86, (1998).

25 Sei, T., Nomura, Y., Tsuchiya, T.: Preparation of ZnGa2O4 thin film by sol-gel process and effect of reduction on its electric conductivity, J. Non-Cryst. Solids, 218, 135 – 38, (1997).

26 Hirano, M., Okumura, S., Hasegawa, Y., Inagaki, M.: Direct precipitation of spinel type oxides ZnGa2O4 from aqueous solutions at low temperature below 90 °;C, Int. J. Inorg. Mater., 3, 809 – 11, (2001).

27 Hirano, M., Okumura, S., Hasegawa, Y., Inagaki, M.: Precipitation of spinel-type Zn(Fe, Ga)2O4 solid solutions from aqueous solutions below 90 °;C: Influence of iron valence of staring salt on their crystallite growth, J. Solid State Chem., 168, 5 – 10, (2002).

28 Zou, L., Xiang, X., Wei, M., Li, F., Evans, D.G.: Single-crystalline ZnGa2O4 spinel phosphor via a single-source inorganic precursor route, Inorg. Chem., 47, 1361 – 69, (2008).

29 Tas, A.C., Majewski, P.J., Aldinger, F.: Chemical synthesis of crystalline, pure or Mn-doped ZnGa2O4 powders at 90 °;C, J. Mater. Res., 17, 1425 – 33, (2002).

30 Hirano, M.: Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles, J. Mater. Chem., 10, 469 – 72, (2000).

31 Hirano, M., Sakaida, N.: Hydrothermal synthesis and low temperature sintering of zinc gallate spinel fine particles, J. Am. Ceram. Soc., 85, 1145 – 1150, (2002).

32 Kim, J.Y., Kang, J.H., Lee, D.C., Jeon, D.Y.: Preparation and characterization of ZnGa2O4 phosphors synthesized with an optimized combustion process, J. Vac. Soc. Technol.B, 21, 532 – 35, (2003).

33 Hong, W.S., De, J.L., Yang, X., Rahaman, M.N.: Reaction sintering of ZnO-Al2O3, J. Am. Ceram. Soc., 78, 3217 – 24, (1995).

34 Huttig, G.F., Worl, H., Weitzer, H.H.: Reactions between solids. the formation of zinc aluminate from zinc oxide and aluminum oxide and the formation of copper-nickel alloys from mixtures of copper and nickel powders, Z. Anorg. Allg. Chem., 283, 207 – 16, (1956).

35 Kurihara, L.K., Suib, S.L.: Sol-gel synthesis of ternary metal oxides. 1. synthesis and characterization of MAl2O4 (M = Mg, Ni, Co, Cu, Fe, Zn, Mn, Cd, Ca, Hg, Sr, and Ba) and lead aluminum oxide (Pb2Al2O5), Chem. Mater., 5, 609 – 13, (1993).

36 Mathur, S., Veith, M., Haas, M., Shen, H., Lecerf, N., Huch, V.: Single-source sol-gel synthesis of nanocrystalline ZnAl2O4: structural and optical properties, J. Am. Ceram. Soc., 84, 1921 – 28, (2001).

37 Wang, Y., Wu, K.: As a whole: crystalline zinc aluminate nanotube array nanonet, J. Am, Chem. Soc., 127, 9686 – 87, (2005).

38 Takeguchi, T., Kani, Y., Inoue, M., Eguchi, K.: Steam reforming of methanolon copper catalysts supported on large-surface area ZnAl2O4, Catal. Lett., 83, 49 – 53, (2002).

39 Zawadzki, M., Wrzyszcz, J.: Hydrothermal synthesis of nanoporous zinc aluminate with high surface area, Mater. Res. Bull., 35, 109 – 14, (2000).

40 Chen, Z., Shi, E., Zheng, Y., Li, W., Wu, N., Zhong, W.: Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions, Mater. Lett., 56, 601 – 605, (2002).

41 Kubelka, P., Munk, F.: A paper on the optics of colour coatings, in german, Zeits. f. Techn. Physik. 12, 593 – 601, (1931).

42 Zhang, L., Ji, G.-F., Zhao, F., Gong, Z.-Z.: First-principles study of the structural, mechanical and electronic properties of ZnX2O4 (X=Al, Cr and Ga), Chin. Phys. B., 20, 047102, (2011).

43 Dixit, H., Tandon, N., Cottenier, S., Saniz, R., Lamoen, D., Partoens, B., Speybroecl, V.V., Waroquier, M.: Electronic structure and band gap of zinc spinel oxide beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4, New J. Phys., 13, 063002, (2011).

44 Sampath, S.K., Kanhere, D.G., Pandey, R.: Electronic structure of spinel oxides: zinc aluminate and zinc gallate, J. Phys. Cond. Matt., 11, 3635 – 44, (1999).

45 Jeong, I.K., Park, H.L., Mho, S.I.: Two self-activated optical centers of blue emission in zinc gallate, Solid State Commun., 105, 179 – 83, (1998).

46 Kim, J.S., Kang, H.I., Kim, W.N., Kim, J.I., Choi, J.C., Park, H.L., Kim, G.C., Kim, T.W., Hwang, Y.H., Mho, S.I., Jung, M.-C., Han, M.: Color variation of ZnGa2O4 phosphor by reduction-oxidation processes, Appl. Phys. Lett., 82, 2029 – 31, (2003).

47 Bae, S.Y., Seo, H.W., Na, C.W., Park, J.: Synthesis of blue-light-emitting ZnGa2O4 nanowires using chemical vapor deposition, Chem. Commun, 1834 – 35, (2004).

48 Da Silva, A.A., Goçalves, A.S., Davolos, M.R.: Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, J. Sol-Gel Sci Technol., 49, 101 – 105, (2009).

49 Wang, T., Radovanovic, P.V.: Size-dependent electron transfer and trapping in strongly luminescent colloidal gallium oxide nanocrystals, J. Phys. Chem. C., 115, 18473 – 78, (2011).

50 Anjiki, A., Uchino, T.: Visible photoluminescence from photoinduced molecular species in nanometer-sized oxides: Crystalline Al2O3 and amorphous SiO2 nanoparticles, J. Phys. Chem. C., 116, 15747 – 55, (2012).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH