Articles
All articles | Recent articles
Additive Manufacturing of Ceramics: A Review
J. Deckers1, J. Vleugels2, J.-P. Kruth1
1 KU Leuven, Department of Mechanical Engineering, division PMA, Celestijnenlaan 300, B-3001 Heverlee, Belgium
2 KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 bus 2450, B-3001 Heverlee, Belgium
received August 14, 2014, received in revised form October 06, 2014, accepted November 03, 2014
Vol. 5, No. 4, Pages 245-260 DOI: 10.4416/JCST2014-00032
Abstract
Additive manufacturing (AM) of ceramics is coming to an aera where the first industrial applications are becoming economically profitable. This review paper provides a survey of AM methods reported in literature to shape ceramic components. It demonstrates that AM has produced ceramic parts that have no cracks or large pores and have mechanical properties close to those of conventionally produced ceramics. Crack- and pore-free ceramics can be manufactured by optimizing the AM process parameters or performing extra densification steps after the AM process. It is also advisable to incorporate colloidal processing techniques in the AM process. Finally, the paper demonstrates that, especially for AM of ceramics, the multi-step indirect AM processes are more appropriate to shape different types of ceramics, while the single-step direct AM processes can produce ceramic parts more rapidly.
Download Full Article (PDF)
Keywords
Additive manufacturing, ceramics, selective laser sintering®, selective laser melting, stereolithography
References
1 ISO/ASTM, 17296 Standard on Additive Manufacturing (AM) Technologies.
2 Kruth, J.-P., Levy, G., Klocke, F., Childs, T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann-Manuf. Techn., 56, [2], 730 – 759, (2007).
3 Mahale, T.H.: Electron beam melting of advanced materials and structures, PhD thesis, North Carolina State University, 2009.
4 Williams, C.B.: Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure, PhD thesis, Georgia Institute of Technology, 2008.
5 Sirringhaus, H., Shimoda, T.: Inkjet printing of functional materials, MRS Bull., 28, [11], 802 – 806, (2003).
6 Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., Fischer, H.: Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res., 88, [7], 673 – 676, (2009).
7 Özkol, E., Wätjen, A.M., Bermejo, R., Deluca, M., Ebert, J., Danzer, R., Telle, R.: Mechanical characterisation of miniaturised direct inkjet printed 3Y-TZP specimens for microelectronic applications, J. Eur. Ceram. Soc., 30, 3145 – 3152, (2010).
8 Hon, K.K.B., Li, L., Hutchings, I.M.: Direct writing technology – advantages and developments, CIRP Ann.-Manuf. Techn., 57, 601 – 620, (2008).
9 Sukeshini, M., Meisenkothen, F., Gardner, P., Reitz, T.L.: Aerosol jet printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy, J. Power Sources, 224, 295 – 303, (2013).
10 Grida, I., Evans, J.R.G.: Extrusion free-forming of ceramics through fine nozzles, J. Eur. Ceram. Soc., 23, 629 – 635, (2003).
11 Yardimci, M.A., Güçeri, S.: Conceptual framework for the thermal process modelling of fused deposition, Rapid Prototyping J., 2, [2], 26 – 31, (1996).
12 Venkataraman, N., Rangarajan, S., Matthewson, M.J., Harper, B., Safari, A., Danforth, S.C., Wu, G., Langrana, N., Guceri, S., Yardimci, A.: Feedstock material property – process relationships in fused deposition of ceramics (FDC), Rapid Prototyping J., 6, [4], 244 – 253, (2000).
13 Miranda, P., Siaz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater., 2, 457 – 466, (2006).
14 Bocanegra-Bernal, M.H., Matovic, B.: Dense and near-net-shape fabrication of Si3N4 ceramics, Mater. Sci. Eng. A, 500, 130 – 149, (2009).
15 Cai, K., Roman-Manso, B., Smay, J.E., Zhou, J., Osendi, M.I., Belmonte, M., Miranzo, P.: Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 95, [8], 2660 – 2666, (2012).
16 de Hazan, Y., Thänert, M., Trunec, M., Misak, J.: Robotic deposition of 3D nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Eur. Ceram. Soc., 32, 1187 – 1198, (2012).
17 Li, J.P., Habibovic, P., van den Doel, M., Wilson, C.E., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials, 28, 2810 – 2820, (2007).
18 King, B.H., Dimos, D., Yang, P., Morissette, S.L.: Direct-write fabrication of integrated, multilayer ceramic components, J. Electroceram., 3, [2], 173 – 178, (1999).
19 Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt, T., Greil, P.: Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 16, [6], 729 – 754, (2014).
20 Leu, M.C., Tang, L., Deuser, B., Landers, R.G., Hilmas, G.E., Zhang, S., Watts, J.: Freeze-form extrusion fabrication of composite structures, SFF Symposium, 2011.
21 Leu, M.C., Garcia, D.A.: Development of freeze-form extrusion fabrication with use of sacrificial material, SFF Symposium, Texas, 2013.
22 Balla, V.K., Bose, S., Bandyopadhyay, A.: Processing of bulk alumina ceramics using laser engineered net shaping, Int. J. Appl. Ceram. Technol., 5, [3], 234 – 242, (2008).
23 Wang, F., Mei, J., Jiang, H., Wu, X.: Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed, Mater. Sci. Eng. A, 445, 461 – 466, (2007).
24 Agarwala, M., Klosterman, D., Osborne, N., Lightman, A.: Hard metal tooling via SFF of ceramics and powder metallurgy, SFF Symposium, Texas, 1999.
25 Gomes, C.M., Oliveira, A.P.N., Hotza, D., Travitzky, N., Greil, P.: LZSA glass-ceramic laminates: Fabrication and mechanical properties, J. Mater. Process. Tech., 206, 194 – 201, (2008).
26 Sachs, E.M., Haggerty, J.S., Cima, M.J., Williams, P.A.: United States patent 5.204.055: Three-dimensional printing techniques, (1993).
27 Cima, M.J., Sachs, E.M.: Three dimensional printing: Forms, materials and performance, SFF symposium, Texas, 1991.
28 Kruth, J., Leu, M., Nakagawa, T.: Progress in additive manufacturing and rapid prototyping, CIRP Ann-Manuf. Techn., 47, [2], 525 – 540, (1998).
29 ExOne: http://www.exone.com/.
30 3DSystems: http://www.3dsystems.com/.
31 Wilkes, J., Wissembach, K.: Rapid manufacturing of ceramic components for medical and technical applications via selective laser melting, Proceedings of the Euro-uRapid conference, Frankfurt, 2006, A4/1.
32 Wilkes, J.: Fraunhofer ILT annual report: Manufacturing of ceramic components by selective laser melting, Fraunhofer ILT, 2006.
33 Wilkes, J.: Selective laser melting for generative production of components from high-strength oxide ceramics, (in German), PhD thesis, Fraunhofer ILT, 2009.
34 Hagedorn, Y.C., Balachandran, N., Meiners, W., Wissembach, K., Poprawe, R.: SLM of net-shaped high strength ceramics: New opportunities for producing dental restaurations, Proceedings of the SFF symposium, Texas, 2011.
35 Hagedorn, Y.-C., Wilkes, J., Meiners, W., Wissembach, K., Poprawe, R.: Additive manufacturing of Al2O3-ZrO2-ceramic parts by selective laser melting, Proceedings of the 5th International Conference on Additive Manufacturing, Loughborough University, 2010.
36 Hagedorn, Y.-C., Wilkes, J., Meiners, W., Wissembach, K., Poprawe, R.: Net shaped high performance oxide ceramic parts by selective laser melting, Physics procedia, 5, 587 – 594, (2010).
37 Lakiza, S.M., Lopato, L.M.: Stable and metastable phase relations in the system alumina-zirconia-yttria, J. Am. Ceram. Soc., 80, [4], 893 – 902, (1997).
38 Dierkes, S., Faber, A.J., Wilkes, J., Welters, M.P.M., Meiners, W., Wissembach, K.: International patent WO2011/018463A1: Ceramic or glass-ceramic article and methods for producing such article, (2011).
39 Dierkes, S., Faber, A.J., Wilkes, J., Welters, M.P.M., Meiners, W., Wissembach, K.: European patent EP2292357A1: Ceramic or glass-ceramic article and methods for producing such article, (2011).
40 Hagedorn, Y.: Event: High-end applications for additive manufacturing: Selective laser melting of net-shaped oxide ceramics, Fraunhofer-ILT, 2013.
41 Shishkovsky, I., Yadroitsev, I., Bertrand, P., Smurov, I.: Alumina-zirconium ceramics synthesis by selective laser sintering/melting, Appl. Surf. Sci., 254, 966 – 970, (2007).
42 Tang, H.H.: Method and apparatus for making three-dimensional parts, Google Patents, (2010).
43 Tang, H.H.: Direct laser fusion to form ceramic parts, Rapid Prototyping J., 8, [5], 284 – 289, (2002).
44 Tang, H.H., Yen, H.C., Lin, W.H.: On ceramic parts fabricated rapid prototyping machine based on ceramic laser fusion, SFF Symposium, Texas, 2003.
45 Tang, H.H., Yen, H.C., Su, S.M., Lin, Z.Y.: Prospect of making ceramic shell mold by ceramic laser fusion, SFF Symposium, Texas, 2004.
46 Yen, H.C., Tang, H.H.: Study on direct fabrication of ceramic shell mold with slurry-based ceramic laser fusion and ceramic laser sintering, Int. J. Adv. Manuf. Technol., 60, 1009 – 1015, (2012).
47 Wu, Y., Du, J., Choy, K.-L., Hench, L.L.: Laser densification of alumina powder beds generated using aerosol assisted spray deposition, J. Eur. Ceram. Soc., 27, 4727 – 4735, (2007).
48 Deckard, C.R., Beaman, J.J., Darrah, J.F.: Method of producing parts, Patent WO1992008567A1, (1992).
49 Lakshminarayan, U., Ogrydiziak, S., Marcus, H.L.: Selective laser sintering of ceramic materials, SFF Symposium, Texas, 1990.
50 Lakshminarayan, U., Marcus, H.L.: Microstructural and mechanical properties of Al2O3/P2O3 and Al2O3/B2O3 composites fabricated by selective laser sintering, SFF Symposium, Texas, 1991.
51 Bertrand, P., Bayle, F., Combe, C., Goeuriot, P., Smurov, I.: Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci., 254, 989 – 992, (2007).
52 Lorrison, J.C., Dalgarno, K.W., Wood, D.J.: Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering, J. Mater. Sci.: Mater. M., 16, 775 – 781, (2005).
53 Gu, D., Shen, Y.: Direct laser sintered WC-10Co/Cu nanocomposites, Appl. Surf. Sci., 254, 3971 – 3978, (2008).
54 Gahler, A., Heinrich, J.G.: Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition, J. Am. Ceram. Soc., 89, [10], 3076 – 3080, (2006).
55 Bergstrom, L.: Colloidal processing of ceramics, in 'Handbook of Applied Surface and Colloid Chemistry', (ed. K. Holmberg), John Wiley & Sons, 2001.
56 Deckers, J., Shahzad, K., Vleugels, J., Kruth, J.: Isostatic pressing assisted indirect selective laser sintering of alumina components, Rapid Prototyping J., 18, [5], 409 – 419, (2012).
57 Heinrich, J.G.: LSD-based selective laser sintering, cfi/Ber.DKG, 86, [10], E129-E130, (2009).
58 Tian, X., Günster, J., Melcher, J., Li, D., Heinrich, J.G.: Process parameters analysis of direct Laser Sintering and post treatment of porcelain components using Taguchi's method, J. Eur. Ceram. Soc., 29, 1903 – 1915, (2009).
59 Tian, X., Li, D., Heinrich, J.G.: Rapid prototyping of porcelain products by layer-wise slurry deposition (LSD) and direct laser sintering, Rapid Prototyping J., 18, 362 – 373, (2012).
60 Tian, X., Sun, B., Heinrich, J.G., Li, D.: Stress relief mechanism in layer-wise laser directly sintered porcelain ceramics, Mater. Sci. Eng. A, 527, 1695 – 1703, (2010).
61 Heinrich, J.G., Gahler, A., Günster, J., Schmücker, M., Zhang, J., Jiang, D., Ruan, M.: Microstructural evolution during direct laser sintering in the Al2O3-SiO2 system, J. Mater. Sci., 42, 5307 – 5311, (2007).
62 Yen, H.-C.: A new slurry-based shaping process for fabricating ceramic green part by selective laser scanning the gelled layer, J. Eur. Ceram. Soc., 32, 3123 – 3128, (2012).
63 Klocke, F., Derichs, C., Ader, C., Demmer, A.: Investigations on laser sintering of ceramic slurries, Prod. Eng. Res. Devel., 1, 279 – 284, (2007).
64 Exner, H., Regenfuss, P., Hartwig, L., Klötzer, S., Ebert, R.: Selective laser micro sintering with a novel process, Proceedings of the 4th International Symposium on Laser Precision Microfabrication, 145 – 151, 2003.
65 Petsch, T., Regenfuss, P., Ebert, R., Hartwig, L., Klötzer, S., Brabant, T., Exner, H.: Industrial laser micro sintering, 23rd International Congress on Applications of Lasers and Electro-Optics (ICALEO 2004), San Francisco (CA, USA), 2004.
66 Regenfuss, P., Hartwig, L., Klötzer, S., Ebert, R.: Industrial freeform generation of microtools by laser micro sintering, Rapid Prototyping J., 11, [1], 18 – 25, (2005).
67 Ebert, R., Exner, H., Hartwig, L., Keiper, B., Klötzer, S., Regenfuss, P.: International patent WO2004/076101 A2: Method and device for producing miniature bodies or microstructured bodies, (2004).
68 Exner, H., Regenfuss, P., Ebert, R.: Laser micro sintering – a versatile instrument for the generation of microparts, Laser Technik Journal, 1, 26 – 31, (2007).
69 Regenfuss, P., Streek, A., Hartwig, L., Klötzer, S., Brabant, T., Horn, M., Ebert, R., Exner, H.: Principles of laser micro sintering, Proceedings of the 17th annual SFF Symposium, Texas, 740 – 753, 2006.
70 Streek, A., Regenfuss, P., Ebert, R., Exner, H.: Laser micro sintering – upgrade of the technology, Proceedings of the ICALEO conference, Orlando (FL, USA), 2009.
71 Regenfuss, P., Streek, A., Hartwig, L., Klötzer, S., Brabant, T., Horn, M., Ullmann, F., Ebert, R., Exner, H.: Material depending mechanisms in laser micro sintering, Proceedings of the 5th LANE conference, Erlangen, 2007, 403 – 418.
72 Exner, H., Regenfuss, P., Ebert, R., Hartwig, L., Streek, A., Klötzer, S., Horn, M.: Laser microsintering of ceramic materials, (in German), RTejournal – Forum für Rapid Technologie, 3, 1 – 18, (2006).
73 Regenfuss, P., Streek, A., Hartwig, L., Horn, M., Klötzer, S., Ebert, R., Exner, H.: Freeform fabrication of dental inlays by laser micro-sintering, The laser user magazine, 52, 36 – 38, (2008).
74 Regenfuss, P., Streek, A., Ullmann, F., Hartwig, L., Horn, M., Kühn, C., Ebert, R., Exner, H.: Laser microsintering – reaction models and results, cfi/Ber.DKG, 85, [13], 65 – 72, (2008).
75 Regenfuss, P., Streek, A., Ullmann, F., Kühn, C., Hartwig, L., Horn, M., Ebert, R., Exner, H.: Laser micro sintering of ceramic materials, part 2, Interceram, 57, 6 – 9, (2008).
76 Exner, H., Horn, M., Streek, A., Ullmann, F., Hartwig, L., Regenfuss, P., Ebert, R.: Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder, Virtual and Physical Prototyping, 3, [1], 3 – 11, (2008).
77 Streek, A., Regenfuss, P., Ullmann, F., Hartwig, L., Ebert, R., Exner, H.: Processing of silicon carbide by laser micro sintering, SFF Symposium, Texas, 349 – 358, 2006.
78 Deckers, J., Meyers, S., Wijremblewski, B., Kruth, J.-P., Vleugels, J.: Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures, 8th International Conference on Photonic Technologies LANE 2014, Fürth, Physics Procedia, 117 – 124, 2014.
79 Deckers, J., Meyers, S., Wijremblewski, B., Vleugels, J., Kruth, J.-P.: Direct selective laser sintering/melting of fine grained alumina with a novel experimental setup, Mater. Sci. Tech.: Special issue on 3D printing, 2014 (Submitted).
80 Wijremblewski, B.: Testing an experimental setup for the selective laser sintering of technical ceramics (master thesis), KU Leuven, 2013.
81 Bertrand, P., Yadroitsev, I., Smurov, I.: Rapid prototyping and direct fabrication by laser of multimaterial and mulitfunctional objects, (in French), Dixième assisses Europ. de Prototypage Rapide, 2004.
82 Birmingham, B.R., Marcus, H.L.: Solid freeform fabrication of silicon nitride shapes by selective laser reaction sintering (SLRS), SFF Symposium, Texas, 1995.
83 Klocke, F., Wirtz, H.: Selective laser sintering of ceramics, Laser Assisted Net Shape Engineering (LANE) conference, Erlangen, 1997.
84 Tang, H.H.: Ceramic laser sintering – optimization of ceramic rapid prototyping, Technical report of the National Taipei University of Technology in Taiwan, 1993.
85 Barlow, J.W., Vail, N.K.: International patent WO 93/19019: Producing high-temperature parts by low-temperature sintering, (1993).
86 Liu, Z.H., Nolte, J.J., Packard, J.I., Hilmas, G., Dogan, F., Leu, M.C.: Selective laser sintering of high density alumina ceramic parts, Proceedings of the 35th MATADOR conference, Taipei (Taiwan), 351 – 354, 2007.
87 Deckers, J., Kruth, J., Shahzad, K., Vleugels, J.: Density improvement of alumina parts produced through selective laser sintering of alumina-polyamide composite powder, CIRP Ann. Manuf. Techn., 61, [1], 211 – 214, (2012).
88 Rombouts, M., Deckers, J., Thijs, I., Deckx, J., Kruth, J.-P.: Wax based binder for indirect selective laser sintering of alumina, 5th International PMI Conference, Ghent (Belgium), 184 – 188, 2012.
89 Shahzad, K., Deckers, J., Kruth, J.-P., Vleugels, J.: Additive manufacturing of alumina parts by indirect selective laser sintering and post processing, J. Mater. Process. Tech., 213, [9], 1484 – 1494, (2013).
90 Subramanian, K., Vail, N., Barlow, J. Marcus, H.: Selective laser sintering of alumina with polymer binders, Rapid Prototyping J., 1, [2], 24 – 35, (1995).
91 Deckers, J., Kruth, J., Cardon, L., Shahzad, K., Vleugels, J.: Densification and geometrical assessments of alumina parts produced through indirect selective laser sintering of alumina-polystyrene composite powder, Stroj. Vestn. – J. Mech. E, 59, [11], 646 – 661, (2013).
92 Shahzad, K., Deckers, J., Boury, S., Neirinck, B., Kruth, J., Vleugels, J.: Preparation and indirect selective laser sintering of alumina/PA microspheres, Ceram. Int., 38, 1241 – 1247, (2012).
93 Lee, I.: Influence of heat treatment upon SLS processed composites fabricated with alumina and monoclinic HBO2, J. Mater. Sci. Lett., 21, 209 – 212, (2002).
94 Lee, I.: Rapid full densification of alumina-glass composites fabricated by a selective laser sintering process, J. Mater. Sci. Lett., 17, 1907 – 1911, (1998).
95 Bai, P., Cheng, J., Liu, B.: Selective laser sintering of polymer-coated Al2O3/ZrO2/TiC ceramic powder, Trans. Nonferrous Met. Soc. China, 15, [2], 261 – 265, (2005).
96 Goodridge, R.D., Wood, D.J., Ohtsuki, C., Dalgarno, K.W.: Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering, Acta Biomater., 3, 221 – 231, (2007).
97 Chakravarthy, K.M., Bourell, D.L.: Binder development for indirect SLS of non metallics, Proceedings of the SFF Symposium, Texas, 2010.
98 Liu, J., Zhang, B., Yan, C., Shi, Y.: The effect of processing parameters on characteristics of Selective Laser Sintering dental glass-ceramic powder, Rapid Prototyping J., 16, [2], 138 – 145, (2010).
99 Evans, R.S.: Indirect rapid manufacturing of silicon carbide composites, PhD thesis, The University of Texas Austin, 2005.
100 Stevinson, B., Bourell, D.L., Beaman, J.J.: Dimensional stability during post-processing of selective laser sintered ceramic preforms, Virtual and Physical Prototyping, 1, [4], 209 – 216, (2006).
101 Stevinson, B.Y., Bourell, D.L., Beaman, J.J.: Support-free infiltration of selective laser sintered (SLS) silicon carbide preforms, SFF Symposium, Texas, 359 – 365, 2006.
102 Shahzad, K., Deckers, J., Zhang, Z., Kruth, J.-P., Vleugels, J.: Additive manufacturing of zirconia parts by indirect selective laser sintering, J. Eur. Ceram. Soc., 34, [1], 81 – 89, (2014).
103 Leu, M.C., Pattnaik, S., Hilmas, G.E.: Investigation of laser sintering for freeform fabrication of zirconium diboride parts, Virtual and Physical Prototyping, 7, [1], 25 – 36, (2012).
104 Leu, M.C., Adamek, E.B., Huang, T., Hilmas, G.E., Dogan, F.: Freeform fabrication of zirconium diboride parts using selective laser sintering, SFF Symposium, Texas, 2008.
105 Leu, M.C., Pattnaik, S., Hilmas, G.E.: Optimization of selective laser sintering process for fabrication of zirconium diboride parts, SFF Symposium, Texas, 2010.
106 Shahzad, K.: Powder-based indirect selective laser sintering of ceramics (doctoral thesis), PhD thesis, KU Leuven, 2013.
107 Deckers, J.: Selective laser sintering and melting as additive manufacturing methods to produce alumina parts; 3D printing of ceramics (doctoral thesis), PhD thesis, KU Leuven, 2013.
108 Cardon, L., Deckers, J., Verberckmoes, A., Ragaert, K., Delva, L., Shahzad, K., Vleugels, J., Kruth, J.: Polystyrene-coated alumina powder via dispersion polymerization for indirect selective laser sintering applications, J. Appl. Polym. Sci., 128, [3], 2121 – 2128, (2013).
109 Gill, T.J., Hon, K.K.B.: Experimental investigations into the selective laser sintering of silicon carbide polyamide composites, proc. IMechE, Part B: Journal of Engineering Manufacture, 218, [10], 1249 – 1256, (2004).
110 Evans, R.S., Bourell, D.L., Beaman, J.J., Campbell, M.I.: Rapid manufacturing of silicon carbide composites, Rapid Prototyping J., 11, 37 – 40, (2005).
111 Tang, H.H.: Building ultra-thin layers by ceramic laser sintering, Mater. Trans., 47, [3], 889 – 897, (2006).
112 Yen, H.C., Chiu, M.-L., Tang, H.H.: Laser scanning parameters on fabrication of ceramic parts by liquid phase sintering, J. Eur. Ceram. Soc., 29, 1331 – 1336, (2009).
113 Yen, H.C., Tang. H.H.: Developing a paving system for fabricating ultra-thin layers in ceramic laser rapid prototyping, Int. J. Adv. Manuf. Technol., 36, 280 – 287, (2008).
114 Tang, H.H., Chiu, M.-L., Yen, H.C.: Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts, J. Eur. Ceram. Soc., 31, 1383 – 1388, (2011).
115 Yen, H.C., Tang. H.H., Wu, C.H.: Improving staircase effect in the process of ceramic laser gelling, Adv. Mat. Res., 284 – 286, 43 – 47, (2011).
116 Liu, F.H.: Manufacturing porous multi-channel ceramic by laser gelling, Ceram. Int., 37, 2789 – 2794, (2011).
117 Liu, F.H., Liao, Y.S.: Fabrication of inner complex ceramic parts by selective laser gelling, J. Eur. Ceram. Soc., 30, 3283 – 3289, (2010).
118 Tang, H.H., Liu, F.H.: Ceramic laser gelling, J. Eur. Ceram. Soc., 25, 627 – 632, (2006).
119 Bae, C.J., Halloran, J.A.: Integrally cored ceramic mold fabricated by ceramic stereolithography, Int. J. Appl. Ceram. Technol., 8, [6], 1255 – 1262, (2011).
120 Zhou, W., Li, D., Wang, H.: A novel aqueous ceramic suspension for ceramic stereolithography, Rapid Prototyping J., 16, [1], 29 – 35, (2010).
121 Lithoz GmbH: Folder at Euromold 2012 (Frankfurt), Personal communication, 2012.
122 Griffith, M.L., Halloran, J.W.: Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 79, [10], 2601 – 2608, (1996).
123 Halloran, J.W., Tomeckova, V., Gentry, S., Das, S., Cilino, P., Yuan, D., Guo, R., Rudraraju, A., Shao, P., Wu, T., Alabi, T.R., Baker, W., Legdzina, D., Wolski, D., Zimbeck, W.R., Long, D.: Photopolymerization of powder suspensions for shaping ceramics, J. Eur. Ceram. Soc., 31, 2613 – 2619, (2011).
124 Clarinval, A.M., Carrus, R., Dormal, T.: European patent 1.434.089A1: Photo-polymerisable paste compositions, (2004).
125 Fischer, K., Moszner, N., Rheinberger, V., Wachter, W., Homa, J., Längle, W.: Patent no. 20120010066: Light-curing ceramic slips for the stereolithographic preparation of high-strength ceramics, (2012).
126 Halloran, J.W., Griffith, M., Chu, T.M.: United States patent 6.117.612: Stereolithography resin for rapid prototyping of ceramics and metals, (2000).
127 Moszner, N., Wachter, W., Christoph, A., Rheinberger, V.M., Liska, R., Stampfl, J., Patzer, J.: United States patent 7.927.538B2: Licht-curing slips for the stereolithographic preparation of dental ceramics, (2011).
128 Schwarz, M., Schäfer, M., Wessler, B., Gia, K.P.: International patent WO2007/063014: Verfahren zum herstellen keramischer Gusswerkzeuge (Method for producing ceramic casting tools), (2007).
129 Wang, Y.: United States patent 2003/0180665 A1: Ionization radiation imageable photopolymer compositions, (2003).
130 Bertsch, A., Jiguet, S., Renaud, P.: Microfabrication of ceramic components by microstereolithography, J. Micromech. Microeng., 14, 197 – 203, (2004).
131 Wang, J.-C.: A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering, Int. J. Precis. Eng. Man., 14, [3], 485 – 491, (2013).
132 de Hazan, Y.,Heinecke, J., Weber, A., Graule, T.: High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants, J. Colloid Interf. Sci., 337, 66 – 74, (2009).
133 Jacobs, P.F.: Rapid prototyping & manufacturing – fundamentals of stereolithography 29 – 33; Society of Manufacturing Engineers, 1992.
134 Badev, A., Abouliatim, Y., Chartier, T., Lecamp, L., Lebaudy, P., Chaput, C., Delage, C.: Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography, J. Photoch. Photobio. A, 222, 117 – 122, (2011).
135 Chartier, T., Badev, A., Abouliatim, Y., Lebaudy, P., Lecamp, L.: Stereolithography process: Influence of the rheology of silica suspensions and of the medium on polymerization kinetics - cured depth and width, J. Photoch. Photobio. A, 32, 1625 – 1634, (2012).
136 Tomeckova, V., Halloran, J.W.: Critical energy for photopolymerization of ceramic suspensions in acrylate monomers, J. Eur. Ceram. Soc., 30, 3273 – 3282, (2010).
137 Tomeckova, V., Halloran, J.W.: Cure depth for photopolymerization of ceramic suspensions, J. Eur. Ceram. Soc., 30, 3023 – 3033, (2010).
138 Tomeckova, V., Halloran, J.W.: Predictive models for the photopolymerization of ceramic suspensions, J. Eur. Ceram. Soc., 30, 2833 – 2840, (2010).
139 Doreau, F., Chaput, C., Chartier, T.: Stereolithography for manufacturing ceramic parts, Adv. Eng. Mater., 2, [8], 493 – 496, (2000).
140 Tesavibul, P., Felzmann, R., Gruber, S., Liska, R., Thompson, I., Boccaccini, A.R., Stampfl, J.: Processing of 45S5 Bioglass by lithography-based additive manufacturing, Mater. Lett., 74, 81 – 84 (2012).
141 Chartier, T., Chaput, C., Doreau, F., Loiseau, M.: Stereolithography of structural complex ceramic parts, J. Mater. Sci., 37, 3141 – 3147, (2002).
142 3DCeram, http://3dceram.com.
143 Sirris, http://www.sirris.be.
144 Clarinval, A.M.: Production of metallic and ceramic parts with the optoform process, 2006.
145 Formatec, http://www.formatec.nl/.
146 TUWien, http://www.tuwien.ac.at.
147 Ivoclar-Vivadent, http://www.ivoclarvivadent.com.
148 Maalderink, H.: Event: High-end applications for additive manufacturing: SLA processing of highly filled resins, TNO Delft, 2013.
149 Bae, C.J., Halloran, J.W.: Influence of residual monomer on cracking in ceramics fabricated by stereolithography, Int. J. Appl. Ceram. Technol., 8, [6], 1289 – 1295, (2011).
150 Bruijcker, M.D.: Press release of Admatec Europe BV: Four new printers installed for series production of functional ceramic components; printing ceramics proves to be a production solution. 2014.
151 Bertsch, A., Jiguel, S., Hofmann, H., Renaud, P.: Ceramic microcomponents by microstereolithography, IEEE, 725 – 728, (2004).
152 Provin, C., Monneret, S., Gall, H.L., Corbel, S.: Three-dimensional ceramic microcomponents made using microstereolithography, Adv. Mater., 15, [12], 994 – 997, (2003).
153 Nold, A., Zeiner, J., Assion, T., Clasen, R.: Electrophoretic deposition as rapid prototyping method, J. Eur. Ceram. Soc., 30, 1163 – 1170, (2010).
154 Niu, F., Wu, D., Ma, G., Zhou, S., Zhang, B.: Effect of second-phase doping on laser deposited Al2O3 ceramic, SFF Symposium, Texas, 2014.
155 Deckers, J., Cardon, L., Shahzad, K., Vleugels, J., Kruth, J.: Production of alumina parts through indirect selective laser sintering of alumina-polystyrene composite powder, 5th International Conference on Polymers and Moulds Innovations (PMI), Ghent (Belgium), 178 – 183, 2012.
156 Iyer, S., McIntosh, J., Bandyopadhyay, A., Langrana, A., Safari, A., Danforth, S.C., Clancy, R.B., Gasdaska, C., Whalen, P.J.: Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics, Int. J. Appl. Ceram. Tech., 5, [2], 127 – 137, (2008).
157 Yoo, J., Cima, M.J., Khanuja, S., Sachs, E.M.: Structural ceramic components by 3D printing, SFF Symposium, Texas, 1993.
158 Liu, Z.E., Ko, T.C., Best, J., Cawley, J.D., Heuer, A.H.: CAM-LEM processing: Materials flexibility, SFF Symposium, Texas, 1997.
159 Griffin, E.A., Mumm, D.R., Marshall, D.B.: Rapid prototyping of functional ceramic composites, Am. Ceram. Soc. Bull., 75, 65, (1996).
160 Rodrigues, S., Chartoff, R., Klostermann, D., Agarwala, M., Hecht, N.: Solid freeform fabrication of functional silicon nitride ceramics by laminated object manufacturing, Proceedings of the SFF Symposium, Texas, 2000.
161 Klosterman, D., Chartoff, R., Osborne, N., Graves, G.: Automated fabrication of monolithic and ceramic matrix composites via laminated object manufacturing (LOM), SFF Symposium, Texas, 1997.
162 Weisensel, L., Windsheimer, H., Travitzky, N., Greil, P.: Laminated object manufacturing (LOM) of SiSiC-composites, cfi/Ber. DKG, 13, 31 – 35, (2006).
163 Kruth, J.: Material incress manufacturing by rapid prototyping techniques, CIRP Ann.-Manuf. Techn., 40, [2], 603 – 614, (1991).
Copyright
Göller Verlag GmbH