Articles
All articles | Recent articles
Preparation of Ceramic Nanoparticles by CO2 Laser Vaporization
H.-D. Kurland, J. Grabow, Chr. Stötzel, F.A. Müller
Otto-Schott-Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
received June 30, 2014, received in revised form August 27, 2014, accepted September 25, 2014
Vol. 5, No. 4, Pages 275-280 DOI: 10.4416/JCST2014-00025
Abstract
Functional ceramic nanopowders are prepared by means of CO2 laser vaporization (LAVA) starting from coarse ceramic powders. The vaporization proceeds in a continuously flowing process gas at normal pressure. The nanoparticles (NP) are formed as a result of rapid gas phase condensation. Selected LAVA nanopowders are presented as promising candidates for future applications, e.g. drug targeting and magnetic resonance imaging, load-bearing ceramic implants, and biological fluorescence labeling, respectively. Starting from a hematite raw powder, ferrimagnetic Fe2O3 nanopowders are prepared. It is found that in an oxygen-free process gas maghemite (γ-Fe2O3) NP are formed. Applying oxygen as process gas leads to the formation of γ- and ε- Fe2O3 NP. Superparamagnetic composite NP are prepared from mixtures of hematite raw powder and quartz sand (SiO2). NP comprising an intraparticular dispersion of alumina and tetragonal zirconia (t-ZrO2) are obtained by means of the vaporization of a powder mixture of corundum (α-Al2O3) as the main component and t-ZrO2. Europium-doped strontium aluminate (SrAl2O4) NP are prepared from a mixture of strontia (SrO), corundum, and Eu2O3. The as-prepared amorphous NP reveal a red photoluminescence emission under excitation with ultraviolet radiation. Annealing in a reductive atmosphere yields a crystalline Eu2+:SrAl2O4 nanopowder that shows an intense green emission.
Download Full Article (PDF)
Keywords
Laser vaporization, ceramic nanoparticles, photoluminescence, Al2O3-ZrO2, magnetic nanoparticles
References
1 Masala, O., Seshadri, R.: Synthesis routes for large volumes of nanoparticles, Annu. Rev. Mater. Res., 34, 41 – 81, (2004).
2 Kurland, H.-D., Grabow, J., Müller, F.A.: Preparation of ceramic nanospheres by CO2 laser vaporization (LAVA), J. Eur. Ceram. Soc., 31, 2559 – 2568, (2011).
3 Cornell, R.M., Schwertmann, U.: The Iron Oxides: structure, properties, reactions, occurences and uses. 2nd edition, Wiley-VCH, Weinheim, Germany, 2003.
4 Hergt, R., Dutz, S., Röder, M.: Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia, J. Phys.: Condens. Matter, 20, 385214 – 385215, (2008).
5 Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995 – 4021, (2005).
6 Tronc, E., Chaneac, C., Jolivet, J.P.: Structural and magnetic characterisation of ε-Fe2O3, J. Solid State Chem., 139, 93 – 104, (1998).
7 Stötzel, C., Kurland, H.-D., Grabow, J., Dutz, S., Müller, E., Sierka, M., Müller, F.A.: Control of the crystal phase composition of FexOy nanopowders prepared by CO2 laser vaporization, Cryst. Growth Des., 13, 4868 – 4876, (2013).
8 Jin, J., Ohkoshi, S., Hashimoto, K.: Giant coercive field of Nanometer-sized iron oxide, Adv. Mater., 16, 48 – 51, (2004).
9 Tran, P.H.L., Tran, T.T.D., Vo, T.V., Lee, B.: Promising iron Oxide-based magnetic nanoparticles in biomedical engineering, Arch. Pharmacal Res., 35, 2045 – 2061, (2012).
10 Mout, R., Moyano, D.F., Rana, S., Rotello, V.M.: Surface functionalization of nanoparticles for nanomedicine, Chem. Soc. Rev., 41, 2539 – 2544, (2012).
11 Heimke, G., Leyen, S., Willmann, G.: Knee arthoplasty: recently developed ceramics offer new solutions, Biomaterials, 23, 1539 – 1551, (2002).
12 Nikolay, D., Kollenberg, W., Deller, K., Oswald, M., Tontrup, C.: Manufacturing and properties of ZTA-ceramics with nanoscaled ZrO2, Ceram. Forum Int., 83, 35 – 37, (2006).
13 Uribe, J., Geringer, J., Gremillard, L., Reynard, B.: Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device, Tribol. Int., 63, 151 – 157, (2013).
14 Han, S.-D., Singh, K.C., Cho, T.-Y., Lee, H.-S., Jakhar, D., Hulme, J.P., Han, C.-H., Kim, J.-D., Chun, I.-S., Gwak, J.: Preparation and characterization of long persistence strontium aluminate phosphor, J. Luminescence, 128, 301 – 305, (2008).
15 Poort, S.H.M., Blokpoel, W.P., Blasse, G.: Luminescence of Eu2+ in barium and strontium aluminate and gallate, Chem. Mater., 7, 1547 – 1551, (1995).
16 Kostova, M.H., Zollfrank, C., Batentschuk, M., Goetz-Neunhoeffer, F., Winnacker, A., Greil, P.: Bioinspired design of SrAl2O4:Eu2+ phosphor, Adv. Funct. Mater., 19, 599 – 603, (2009).
17 Aroz, R., Lennikov, V., Cases, R., Sanjuan, M.L., de la Fuente, G.F., Munoz, E.: Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors, J. Eur. Ceram. Soc., 32, 4363 – 4369, (2012).
18 Zollfrank, C., Gruber, S., Batentschuk, M., Osvet, A., Goetz-Neunhoeffer, F., Dittrich, S., Grabow, J., Kurland, H.-D., Müller, F.A.: Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization, Acta Mater., 61, 7133 – 7141, (2013).
Copyright
Göller Verlag GmbH