• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Mullitization of Manganese-Doped Aluminosilicate Diphasic Gel

J. Roy1, S. Das2, S. Maitra2

1 Camellia Institute of Technology, Kolkata-700129, India
2 Government College of Engineering & Ceramic Technology, Kolkata-700010, India

received April 24, 2014, received in revised form July 5, 2014, accepted August 19, 2014

Vol. 5, No. 4, Pages 299-308   DOI: 10.4416/JCST2014-00016

Abstract

Diphasic mullite precursor gel was synthesized from inorganic salts of aluminum and silicon. The synthesized gel was characterized by means of chemical analyses, FTIR spectroscopic studies as well as measurement of surface area and bulk density. Manganese dioxide (MnO2) as an additive was mixed with the dried gel in different ratios (w/w) by co-grinding followed by compaction. The compacted masses were sintered at different elevated temperatures. The mullitization process was studied by performing differential thermal analysis (DTA) at four different heating rates and the activation energy for mullitization was calculated in each case, using the Kissinger thermal analysis model. MnO2 lowered the activation energy of the mullitization process. XRD and SEM techniques were used to study the microstructures and phase development in the sintered masses. It was observed that in presence of MnO2, the microstructure of the mullite ceramics was significantly modified, resulting in an enhancement of the mechanical properties of mullite.

Download Full Article (PDF)

Keywords

Sol-gel method, ceramics, differential thermal analysis, scanning electron microscopy, x-ray diffraction

References

1 Bowen, N.L., Greig, J.W.: The system Al2O3.2SiO2, J. Am. Ceram. Soc., 7, 238 – 254, (1924).

2 Cameron, W.E.: Mullite: a substituted alumina, Am. Miner., 62, 747 – 755, (1977).

3 Schneider, H., Eberhard, E.: Thermal expansion of mullite, J. Am. Ceram. Soc., 73, 2073 – 2076, (1990).

4 Hynes, A.P., Doremus, R.H.: High-temperature compressive creep of polycrystalline mullite, J. Am. Ceram. Soc., 74, 2469 – 2475, (1991).

5 Kollenberg, W., Schneider, H.: Microhardness of mullite at temperartures to 1000 °C, J. Am. Ceram. Soc., 72, 1739 – 1740, (1989).

6 Aksay, A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic and optical applications, J. Am. Ceram. Soc., 74, 2343 – 2358, (1991).

7 Skoog, A.J., Moore, R.E.: Refractory of the past for the future: mullite and its use as a bonding phase, Am. Ceram. Soc. Bull., 67, 1180 – 1185, (1988).

8 Kobayashi, F., Wanatabe, W., Yamamoto, N., Anzai, A., Takahashi, A., Daikoku, T., Fujita, T.: Hardware technology for hitachi M-880 processor group. In: proceedings of 41st electronic components & Technology Conf. Atlanta (GA), 1991.

9 Ramakrishnan, V., Goo, E., Roldan, J. M., Giess, E. A.: Microstructure of mullite ceramics used for substrate and packaging applications, J. Mater. Sci., 27, 6127 – 6130, (1992).

10 Kurihara, T., Horiuchi, M., Takeuchi, Y., Wakabayashi, S.: Mullite ceramic substrate for thin-film application. In: proceedings of 40th components and technology conf. IEEE, New York, 68 – 75, 1990.

11 Mazel, F., Gonon, M., Fantozzi, G.: Manufacture of mullite substrates from andalusite for the development of thin film solar cells, J. Eur. Ceram. Soc., 22, 453 – 461, (2002).

12 Shinohara, N., Dabs, D.M., Aksay, I.A.: Infrared transparent mullite through densification of monolithic gels at 1250 °C, Proc. SPIE—Int. Soc. Opt. Eng., 683, 19 – 24, (1986).

13 Cividanes, L.S., Campos, T.M.B., Rodrigues, L.A., Brunelli, D.D., Thim, G.P.: Review of mullite synthesis routes by sol-gel method, J. Sol-Gel Sci. Technol., 55, 111 – 125, (2010).

14 Roy, R., Komarneni, S., Roy, D.M.: Better ceramics through chemistry. In: Brinker, C. J., Clark, D.E., Ulrich, D.R. (eds). Elsevier, North-Holland, New York, pp. 347 – 360, 1984.

15 Schneider, H: Transition metal distribution in mullite, Ceram. Trans., 6, 135 – 138, (1990).

16 da Silva, M.G.F.: Role of MnO on the mullitization behavior of Al2O3-SiO2 gels, J. Sol-Gel Sci. Technol., 13, 987 – 990, (1998).

17 Tkalcec, E., Grzeta, B., Popovic, J., Ivankovic, H., Rakvin, B.: Structural studies of Cr-doped mullite derived from single-phase precursors, J. Phys. Chem. Solids. 67, 828 – 835, (2006).

18 Bagchi, B., Das, S., Bhattacharya, A., Basu, R., Nandy, P.: Effect of nickel and cobalt ions on low temperature synthesis of mullite by sol-gel techniques, J. Sol-Gel Sci. Technol., 55, 135 – 141, (2010).

19 Roy, D., Bagchi, B., Bhattacharya, A., Das, S., Nandy, P.: A comparative study of densification of sol-gel derived nano-mullite due to the influence of iron, nickel and copper ions, Int. J. Appl. Ceram. Technol., 2013 DOI: 10.1111/ijac.12114.

20 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of CoO on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, J. Engg. Sci. Technol. Rev., 3, 136 – 141, (2010).

21 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of TiO2 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, Interceram, 59, 213 – 217, (2010).

22 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Role of Cr2O3 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, Ceramica (Braz.), 56, 273 – 278, (2010).

23 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Role of V2O5 on the formation of chemical mullite from aluminosilicate precursor, Ceram. Int., 36, 1603 – 1608, (2010).

24 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of copper ions on mullite formation from aluminosilicate precursor, Ceram-Silik, 54, 128 – 132, (2010).

25 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of synthetic Fe2O3 on the properties of mullite ceramics from diphasic Al2O3-SiO2 gel, J. Aus. Ceram. Soc., 46, 15 – 22, (2010).

26 Okada, K.: Activation energy of mullitization from various starting materials, J. Eur. Ceram. Soc., 28, 377 – 382, (2008).

27 shop.bsigroup.com

28 de la Lastra, B., Leblud, C., Leriche, A., Cambier, F., Anseau, M.R.: K IC calculations for some mullite-zirconia composites prepared by reaction sintering, J. Mat. Sci. Lett., 4, 1099 – 1101, (1995).

29 Skinner, K.G., Cook, W.H., Potter, R.A., Palmour, H.: Effect of TiO2, Fe2O3 and alkali on mineralogical and physical properties of mullite type and mullite forming Al2O3-SiO2 mixtures, J. Am. Ceram. Soc., 36, 349 – 356, (1953).

30 Okada, K., Otsuka, N.: Characterization of the spinel phase from SiO2-Al2O3 xerogels and the formation process of mullite, J. Am. Ceram. Soc., 69, 652 – 656, (1986).

31 Orefice, B.L., Vasconcelos, W.L.: Sol-gel transition and structural evolution on multicomponent gels derived from the alumina-silica system, J. Sol-Gel Sci. Tech., 9, 239 – 249, (1977).

32 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Studies on the formation of mullite from diphasic Al2O3-SiO2 gel by fourier transform infrared spectroscopy, Iran. J. Chem. Chem. Eng., 30, 65 – 71, (2011).

33 Greenwood, N.N., Earnshaw, A.: Chemistry of the elements. 2nd edition. Butterworth Heinemann, Oxford, 1998.

34 Schneider, H., Okada, K., Pask, J.: Mullite and mullite ceramics. John Wiley and Sons Ltd., England, pp. 52 – 53, 1994.

35 Okada, K., Kanedaa, J., Kameshimaa, Y., Yasumoria, A., Takei, T.: Crystallization kinetics of mullite from polymeric Al2O3-SiO2 xerogels, Mater. Lett., 57, 3155 – 3159, (2003).

36 Tan, H., Ding, Y., Zhang, H., Yang, J., Qiao, G.: Activation energy for mullitization of gel fibres obtained from aluminium isopropoxide, Bull. Mater. Sci., 35, 833 – 837, (2012).

37 Pask, J.A.: Importance of starting materials on reactions and phase equilibria in the Al2O3-SiO2 system, J. Eur. Ceram. Soc., 16, 101 – 108, (1996).

38 Li, D.X., Thomson, W.J.: Mullite formation from nonstoichiometric diphasic precursors, J. Am. Ceram. Soc., 74, 2382 – 2387, (1991).

39 Ossaka, J.: Tetragonal mullite-like phase from co-precipitated gels, Nature, 191, 1000 – 1001, (1961).

40 Li, D.X., Thomson, W.J.: Tetragonal to orthorhombic transformation during mullite formation, J. Mater. Res., 6, 819 – 824, (1991).

41 Gupta, S., Dubikova, M., French, D.: Effect of CO2 gasification on the transformation of coke minerals at high temperatures, Energy Fuels, 21, 1052 – 1061, (2007).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH