Articles
All articles | Recent articles
Mullitization of Manganese-Doped Aluminosilicate Diphasic Gel
J. Roy1, S. Das2, S. Maitra2
1 Camellia Institute of Technology, Kolkata-700129, India
2 Government College of Engineering & Ceramic Technology, Kolkata-700010, India
received April 24, 2014, received in revised form July 5, 2014, accepted August 19, 2014
Vol. 5, No. 4, Pages 299-308 DOI: 10.4416/JCST2014-00016
Abstract
Diphasic mullite precursor gel was synthesized from inorganic salts of aluminum and silicon. The synthesized gel was characterized by means of chemical analyses, FTIR spectroscopic studies as well as measurement of surface area and bulk density. Manganese dioxide (MnO2) as an additive was mixed with the dried gel in different ratios (w/w) by co-grinding followed by compaction. The compacted masses were sintered at different elevated temperatures. The mullitization process was studied by performing differential thermal analysis (DTA) at four different heating rates and the activation energy for mullitization was calculated in each case, using the Kissinger thermal analysis model. MnO2 lowered the activation energy of the mullitization process. XRD and SEM techniques were used to study the microstructures and phase development in the sintered masses. It was observed that in presence of MnO2, the microstructure of the mullite ceramics was significantly modified, resulting in an enhancement of the mechanical properties of mullite.
Download Full Article (PDF)
Keywords
Sol-gel method, ceramics, differential thermal analysis, scanning electron microscopy, x-ray diffraction
References
1 Bowen, N.L., Greig, J.W.: The system Al2O3.2SiO2, J. Am. Ceram. Soc., 7, 238 – 254, (1924).
2 Cameron, W.E.: Mullite: a substituted alumina, Am. Miner., 62, 747 – 755, (1977).
3 Schneider, H., Eberhard, E.: Thermal expansion of mullite, J. Am. Ceram. Soc., 73, 2073 – 2076, (1990).
4 Hynes, A.P., Doremus, R.H.: High-temperature compressive creep of polycrystalline mullite, J. Am. Ceram. Soc., 74, 2469 – 2475, (1991).
5 Kollenberg, W., Schneider, H.: Microhardness of mullite at temperartures to 1000 °C, J. Am. Ceram. Soc., 72, 1739 – 1740, (1989).
6 Aksay, A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic and optical applications, J. Am. Ceram. Soc., 74, 2343 – 2358, (1991).
7 Skoog, A.J., Moore, R.E.: Refractory of the past for the future: mullite and its use as a bonding phase, Am. Ceram. Soc. Bull., 67, 1180 – 1185, (1988).
8 Kobayashi, F., Wanatabe, W., Yamamoto, N., Anzai, A., Takahashi, A., Daikoku, T., Fujita, T.: Hardware technology for hitachi M-880 processor group. In: proceedings of 41st electronic components & Technology Conf. Atlanta (GA), 1991.
9 Ramakrishnan, V., Goo, E., Roldan, J. M., Giess, E. A.: Microstructure of mullite ceramics used for substrate and packaging applications, J. Mater. Sci., 27, 6127 – 6130, (1992).
10 Kurihara, T., Horiuchi, M., Takeuchi, Y., Wakabayashi, S.: Mullite ceramic substrate for thin-film application. In: proceedings of 40th components and technology conf. IEEE, New York, 68 – 75, 1990.
11 Mazel, F., Gonon, M., Fantozzi, G.: Manufacture of mullite substrates from andalusite for the development of thin film solar cells, J. Eur. Ceram. Soc., 22, 453 – 461, (2002).
12 Shinohara, N., Dabs, D.M., Aksay, I.A.: Infrared transparent mullite through densification of monolithic gels at 1250 °C, Proc. SPIE—Int. Soc. Opt. Eng., 683, 19 – 24, (1986).
13 Cividanes, L.S., Campos, T.M.B., Rodrigues, L.A., Brunelli, D.D., Thim, G.P.: Review of mullite synthesis routes by sol-gel method, J. Sol-Gel Sci. Technol., 55, 111 – 125, (2010).
14 Roy, R., Komarneni, S., Roy, D.M.: Better ceramics through chemistry. In: Brinker, C. J., Clark, D.E., Ulrich, D.R. (eds). Elsevier, North-Holland, New York, pp. 347 – 360, 1984.
15 Schneider, H: Transition metal distribution in mullite, Ceram. Trans., 6, 135 – 138, (1990).
16 da Silva, M.G.F.: Role of MnO on the mullitization behavior of Al2O3-SiO2 gels, J. Sol-Gel Sci. Technol., 13, 987 – 990, (1998).
17 Tkalcec, E., Grzeta, B., Popovic, J., Ivankovic, H., Rakvin, B.: Structural studies of Cr-doped mullite derived from single-phase precursors, J. Phys. Chem. Solids. 67, 828 – 835, (2006).
18 Bagchi, B., Das, S., Bhattacharya, A., Basu, R., Nandy, P.: Effect of nickel and cobalt ions on low temperature synthesis of mullite by sol-gel techniques, J. Sol-Gel Sci. Technol., 55, 135 – 141, (2010).
19 Roy, D., Bagchi, B., Bhattacharya, A., Das, S., Nandy, P.: A comparative study of densification of sol-gel derived nano-mullite due to the influence of iron, nickel and copper ions, Int. J. Appl. Ceram. Technol., 2013 DOI: 10.1111/ijac.12114.
20 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of CoO on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, J. Engg. Sci. Technol. Rev., 3, 136 – 141, (2010).
21 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of TiO2 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, Interceram, 59, 213 – 217, (2010).
22 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Role of Cr2O3 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel, Ceramica (Braz.), 56, 273 – 278, (2010).
23 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Role of V2O5 on the formation of chemical mullite from aluminosilicate precursor, Ceram. Int., 36, 1603 – 1608, (2010).
24 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of copper ions on mullite formation from aluminosilicate precursor, Ceram-Silik, 54, 128 – 132, (2010).
25 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of synthetic Fe2O3 on the properties of mullite ceramics from diphasic Al2O3-SiO2 gel, J. Aus. Ceram. Soc., 46, 15 – 22, (2010).
26 Okada, K.: Activation energy of mullitization from various starting materials, J. Eur. Ceram. Soc., 28, 377 – 382, (2008).
27 shop.bsigroup.com
28 de la Lastra, B., Leblud, C., Leriche, A., Cambier, F., Anseau, M.R.: K IC calculations for some mullite-zirconia composites prepared by reaction sintering, J. Mat. Sci. Lett., 4, 1099 – 1101, (1995).
29 Skinner, K.G., Cook, W.H., Potter, R.A., Palmour, H.: Effect of TiO2, Fe2O3 and alkali on mineralogical and physical properties of mullite type and mullite forming Al2O3-SiO2 mixtures, J. Am. Ceram. Soc., 36, 349 – 356, (1953).
30 Okada, K., Otsuka, N.: Characterization of the spinel phase from SiO2-Al2O3 xerogels and the formation process of mullite, J. Am. Ceram. Soc., 69, 652 – 656, (1986).
31 Orefice, B.L., Vasconcelos, W.L.: Sol-gel transition and structural evolution on multicomponent gels derived from the alumina-silica system, J. Sol-Gel Sci. Tech., 9, 239 – 249, (1977).
32 Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Studies on the formation of mullite from diphasic Al2O3-SiO2 gel by fourier transform infrared spectroscopy, Iran. J. Chem. Chem. Eng., 30, 65 – 71, (2011).
33 Greenwood, N.N., Earnshaw, A.: Chemistry of the elements. 2nd edition. Butterworth Heinemann, Oxford, 1998.
34 Schneider, H., Okada, K., Pask, J.: Mullite and mullite ceramics. John Wiley and Sons Ltd., England, pp. 52 – 53, 1994.
35 Okada, K., Kanedaa, J., Kameshimaa, Y., Yasumoria, A., Takei, T.: Crystallization kinetics of mullite from polymeric Al2O3-SiO2 xerogels, Mater. Lett., 57, 3155 – 3159, (2003).
36 Tan, H., Ding, Y., Zhang, H., Yang, J., Qiao, G.: Activation energy for mullitization of gel fibres obtained from aluminium isopropoxide, Bull. Mater. Sci., 35, 833 – 837, (2012).
37 Pask, J.A.: Importance of starting materials on reactions and phase equilibria in the Al2O3-SiO2 system, J. Eur. Ceram. Soc., 16, 101 – 108, (1996).
38 Li, D.X., Thomson, W.J.: Mullite formation from nonstoichiometric diphasic precursors, J. Am. Ceram. Soc., 74, 2382 – 2387, (1991).
39 Ossaka, J.: Tetragonal mullite-like phase from co-precipitated gels, Nature, 191, 1000 – 1001, (1961).
40 Li, D.X., Thomson, W.J.: Tetragonal to orthorhombic transformation during mullite formation, J. Mater. Res., 6, 819 – 824, (1991).
41 Gupta, S., Dubikova, M., French, D.: Effect of CO2 gasification on the transformation of coke minerals at high temperatures, Energy Fuels, 21, 1052 – 1061, (2007).
Copyright
Göller Verlag GmbH