• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Performance and Stability of Mixed Conducting Composite Membranes Based on Substituted Ceria

U. Pippardt1, J. Böer1, Ch. Bollert1, A. Hoffmann1, M. Heidenreich2, R. Kriegel1, M. Schulz1, A. Simon2

1 Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Michael-Faraday-Str. 1, D-07629 Hermsdorf, Germany
2 Bauhaus-University Weimar, Coudraystrasse 13C, D-99423 Weimar, Germany

received April 14, 2014, received in revised form June 6, 2014, accepted July 5, 2014

Vol. 5, No. 4, Pages 309-316   DOI: 10.4416/JCST2014-00014

Abstract

High-temperature dual-phase oxygen separation membranes were successfully prepared from different Ce0.8Gd0.2O2-δ (CG)-spinel mixtures according to the mixed oxide route. MnCo1.9Fe0.1O4 (C19) and Cu0.6Ni0.4Mn2O4 (M2) were used as the spinel components with volume fractions of 10, 20, 30, 40 and 50 vol% respectively. The formation of an electron-conducting percolative network by the spinel components was investigated based on electrical resistivity measurements at room temperature. The oxygen permeation behaviour of the composites was determined as a function of the material composition and the temperature. The highest oxygen flux of approximately 0.14 ml (STP)/cm²min was obtained with samples of 0.8 mm thickness at 900 °C and a spinel content of 30 vol%. The stability of the individual phases was proven by means of X-ray-diffraction (XRD) and microstructural investigations after sintering and high-temperature exposure experiments at 850 °C in a CO2- and SO2-containing model flue gas. No degradation of the composite materials was observed. However, semi-long-term permeation experiments in an air/CO2 gradient revealed a strong increase of the oxygen flux as a function of time accompanied by intensive material corrosion probably caused by kinetic demixing.

Download Full Article (PDF)

Keywords

Oxygen separation, mixed conductor, CO2 stability, composites, ceria

References

1 Federal Ministry of Economics and Labour, Germany, Research and Development Concept for Zero-Emission Fossil-Fuelled Power Plants. Summary of COORETEC (2003).

2 Fu, C., Gundersen, T.: Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes, Energy, 44, 60 – 68, (2012).

3 Schulte, T., Waser, R., Römer, E.W.J., Bouwmeester, H.J.M., Nigge, U., Wiemhöfer, H.-D.: Development of oxygen-permeable ceramic membranes for NOx-sensors, J. Eur. Ceram. Soc., 21, 1971 – 1975, (2001).

4 Stadler, H., Beggel, F., Habermehl, M., Persigehl, B., Kneer, R., Modigell, M., Jeschke, P.: Oxyfuel coal combustion by efficient integration of oxygen transport membranes, Int. J. Greenh. Gas Con., 5, 7 – 15, (2011).

5 Arnold, M., Wang, H., Feldhoff, A.: Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ membranes, J. Membrane Sci., 293, 44 – 52, (2007).

6 Bucher, E., Egger, S., Caraman, G., Sitte, W.: Stability of the SOFC cathode material (Ba0.5Sr0.5)(Co0.8Fe0.2)O3- δ in CO2-containing atmospheres, J. Electrochem. Soc., 155, B1218 – B1224, (2008).

7 Engels, S., Markus, T., Modigell, M., Singheiser, L.: Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions for power plant processes, J. Membrane Sci., 370, 58 – 69, (2011).

8 Efimov, K., Klande, T., Juditzki, N., Feldhoff, A.: Ca-containing CO2-tolerant perovskite materials for oxygen separation, J. Membrane Sci., 389, 205 – 215, (2012).

9 Zeng, Q., Zuo, Y.-B., Fan, G.-G., Chen, C.-S.: CO2-tolerant oxygen separation membranes targeting CO2 capture application, J. Membrane Sci., 335, 140 – 144, (2009)

10 Zhang, K., Ran, R., Ge, L., Shao, Z., Jin, W., Xu, N.: Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability, J. Membrane Sci., 323, 436 – 443, (2008).

11 Dong, X., Zhang, G., Liu, Z., Zhong, Z., Jin, W., Xu, N.: CO2-tolerant mixed conducting oxide for catalytic membrane reactor, J. Membrane Sci., 340, 141 – 147, (2009).

12 Schulz, M., Kriegel, R., Kämpfer, A.: Assessment of CO2 stability and oxygen flux of oxygen permeable membranes, J. Membrane Sci., 378, 10 – 17, (2011).

13 Megel, S., Girdauskaite, E., Sauchuk, V., Kusnezoff, M., Michaelis, A.: Area specific resistance of oxide scales grown on ferritic alloys for solid oxide fuel cell interconnects, J. Power Sources, 196, 7136 – 7143, (2011).

14 Kriegel, R., Kircheisen, R., Töpfer, J.: Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ, Solid State Ionics, 181, 64 – 70, (2010).

15 Waindich, A., Möbius, A., Müller, M.: Corrosion of Ba1–xSrxCo1–yFeyO3–δ and La0.3Ba0.7Co0.2Fe0.8O3–δ materials for oxygen separating membranes under oxycoal conditions, J. Membrane Sci., 337, 182 – 187, (2009).

16 Bunde, A., Roman, E.: Laws of disorder, (in German), PhiuZ, 27, 246 – 256, (1996),

17 Lorenz, C.D., Ziff, R.M.: Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices, Phys. Rev. E, 57, 230 – 236, (1998).

18 Pan, H., Li, L., Deng, X., Meng, B., Tan, X., Li, K.: Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics, J. Membrane Sci., 428, 198 – 204, (2013).

19 Tan, X., Wang, Z., Liu, H., Liu,S.: Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3–δ hollow fibre membranes by surface modifications, (2013), 324, 128 – 135, (2008).

20 Baumann, S., Serra, J.M., Lobera, P.M., Escolástico, S., Schulze-Küppers, F., Meulenberg, W.A.: Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3–δ membranes, J. Membrane Sci., 377, 198 – 205, (2011).

21 Petot-Ervas, G., Dufour, L.-C., Monty, C.: Dynamic segregation in multicomponent oxides under chemical potential gradients, Nato. Adv. Sci. I E-App., 173, 337 – 349, (1989).

22 Schmalzried, H.: Demixing, decomposition and degradation of oxides in chemical potential gradients, Faraday Trans., 86, 1273, (1990).

23 Ueshima, Y., Schmalzried, H., Koepke, J.: Demixing of oxide solid solutions in oxygen potential gradients: Two-phase systems and the morphological stability of the interface, Solid State Ionics, 40 – 41, Part 1, 232 – 235, (1990).

24 Lein, H.L., Wiik, K., Grande, T.: Kinetic demixing and decomposition of oxygen permeable membranes, Solid State Ionics, 15: Proceedings of the 15th International Conference on Solid State Ionics, Part I, 177, 1587 – 1590, (2006).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH