Articles
All articles | Recent articles
Performance and Stability of Mixed Conducting Composite Membranes Based on Substituted Ceria
U. Pippardt1, J. Böer1, Ch. Bollert1, A. Hoffmann1, M. Heidenreich2, R. Kriegel1, M. Schulz1, A. Simon2
1 Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Michael-Faraday-Str. 1, D-07629 Hermsdorf, Germany
2 Bauhaus-University Weimar, Coudraystrasse 13C, D-99423 Weimar, Germany
received April 14, 2014, received in revised form June 6, 2014, accepted July 5, 2014
Vol. 5, No. 4, Pages 309-316 DOI: 10.4416/JCST2014-00014
Abstract
High-temperature dual-phase oxygen separation membranes were successfully prepared from different Ce0.8Gd0.2O2-δ (CG)-spinel mixtures according to the mixed oxide route. MnCo1.9Fe0.1O4 (C19) and Cu0.6Ni0.4Mn2O4 (M2) were used as the spinel components with volume fractions of 10, 20, 30, 40 and 50 vol% respectively. The formation of an electron-conducting percolative network by the spinel components was investigated based on electrical resistivity measurements at room temperature. The oxygen permeation behaviour of the composites was determined as a function of the material composition and the temperature. The highest oxygen flux of approximately 0.14 ml (STP)/cm²min was obtained with samples of 0.8 mm thickness at 900 °C and a spinel content of 30 vol%. The stability of the individual phases was proven by means of X-ray-diffraction (XRD) and microstructural investigations after sintering and high-temperature exposure experiments at 850 °C in a CO2- and SO2-containing model flue gas. No degradation of the composite materials was observed. However, semi-long-term permeation experiments in an air/CO2 gradient revealed a strong increase of the oxygen flux as a function of time accompanied by intensive material corrosion probably caused by kinetic demixing.
Download Full Article (PDF)
Keywords
Oxygen separation, mixed conductor, CO2 stability, composites, ceria
References
1 Federal Ministry of Economics and Labour, Germany, Research and Development Concept for Zero-Emission Fossil-Fuelled Power Plants. Summary of COORETEC (2003).
2 Fu, C., Gundersen, T.: Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes, Energy, 44, 60 – 68, (2012).
3 Schulte, T., Waser, R., Römer, E.W.J., Bouwmeester, H.J.M., Nigge, U., Wiemhöfer, H.-D.: Development of oxygen-permeable ceramic membranes for NOx-sensors, J. Eur. Ceram. Soc., 21, 1971 – 1975, (2001).
4 Stadler, H., Beggel, F., Habermehl, M., Persigehl, B., Kneer, R., Modigell, M., Jeschke, P.: Oxyfuel coal combustion by efficient integration of oxygen transport membranes, Int. J. Greenh. Gas Con., 5, 7 – 15, (2011).
5 Arnold, M., Wang, H., Feldhoff, A.: Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ membranes, J. Membrane Sci., 293, 44 – 52, (2007).
6 Bucher, E., Egger, S., Caraman, G., Sitte, W.: Stability of the SOFC cathode material (Ba0.5Sr0.5)(Co0.8Fe0.2)O3- δ in CO2-containing atmospheres, J. Electrochem. Soc., 155, B1218 – B1224, (2008).
7 Engels, S., Markus, T., Modigell, M., Singheiser, L.: Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions for power plant processes, J. Membrane Sci., 370, 58 – 69, (2011).
8 Efimov, K., Klande, T., Juditzki, N., Feldhoff, A.: Ca-containing CO2-tolerant perovskite materials for oxygen separation, J. Membrane Sci., 389, 205 – 215, (2012).
9 Zeng, Q., Zuo, Y.-B., Fan, G.-G., Chen, C.-S.: CO2-tolerant oxygen separation membranes targeting CO2 capture application, J. Membrane Sci., 335, 140 – 144, (2009)
10 Zhang, K., Ran, R., Ge, L., Shao, Z., Jin, W., Xu, N.: Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability, J. Membrane Sci., 323, 436 – 443, (2008).
11 Dong, X., Zhang, G., Liu, Z., Zhong, Z., Jin, W., Xu, N.: CO2-tolerant mixed conducting oxide for catalytic membrane reactor, J. Membrane Sci., 340, 141 – 147, (2009).
12 Schulz, M., Kriegel, R., Kämpfer, A.: Assessment of CO2 stability and oxygen flux of oxygen permeable membranes, J. Membrane Sci., 378, 10 – 17, (2011).
13 Megel, S., Girdauskaite, E., Sauchuk, V., Kusnezoff, M., Michaelis, A.: Area specific resistance of oxide scales grown on ferritic alloys for solid oxide fuel cell interconnects, J. Power Sources, 196, 7136 – 7143, (2011).
14 Kriegel, R., Kircheisen, R., Töpfer, J.: Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ, Solid State Ionics, 181, 64 – 70, (2010).
15 Waindich, A., Möbius, A., Müller, M.: Corrosion of Ba1–xSrxCo1–yFeyO3–δ and La0.3Ba0.7Co0.2Fe0.8O3–δ materials for oxygen separating membranes under oxycoal conditions, J. Membrane Sci., 337, 182 – 187, (2009).
16 Bunde, A., Roman, E.: Laws of disorder, (in German), PhiuZ, 27, 246 – 256, (1996),
17 Lorenz, C.D., Ziff, R.M.: Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices, Phys. Rev. E, 57, 230 – 236, (1998).
18 Pan, H., Li, L., Deng, X., Meng, B., Tan, X., Li, K.: Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics, J. Membrane Sci., 428, 198 – 204, (2013).
19 Tan, X., Wang, Z., Liu, H., Liu,S.: Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3–δ hollow fibre membranes by surface modifications, (2013), 324, 128 – 135, (2008).
20 Baumann, S., Serra, J.M., Lobera, P.M., Escolástico, S., Schulze-Küppers, F., Meulenberg, W.A.: Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3–δ membranes, J. Membrane Sci., 377, 198 – 205, (2011).
21 Petot-Ervas, G., Dufour, L.-C., Monty, C.: Dynamic segregation in multicomponent oxides under chemical potential gradients, Nato. Adv. Sci. I E-App., 173, 337 – 349, (1989).
22 Schmalzried, H.: Demixing, decomposition and degradation of oxides in chemical potential gradients, Faraday Trans., 86, 1273, (1990).
23 Ueshima, Y., Schmalzried, H., Koepke, J.: Demixing of oxide solid solutions in oxygen potential gradients: Two-phase systems and the morphological stability of the interface, Solid State Ionics, 40 – 41, Part 1, 232 – 235, (1990).
24 Lein, H.L., Wiik, K., Grande, T.: Kinetic demixing and decomposition of oxygen permeable membranes, Solid State Ionics, 15: Proceedings of the 15th International Conference on Solid State Ionics, Part I, 177, 1587 – 1590, (2006).
Copyright
Göller Verlag GmbH