• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

The Influence of the Coarse Fraction on the Porosity of Refractory Castables

J. Fruhstorfer, C.G. Aneziris

Institute of Ceramic, Glass and Construction Materials, Technische Universität Bergakademie Freiberg, Agricolastraße 17, 09596 Freiberg, Germany

received November 18, 2013, received in revised form January 8, 2014, accepted March 4, 2014

Vol. 5, No. 2, Pages 155-166   DOI: 10.4416/JCST2013-00043

Abstract

In this work, the influence of the coarse fraction of a particle size distribution on the flowability and density of refractory castables is investigated. A modified Andreasen model was developed to combine distribution moduli ≤ 0.30 in the fine fraction for flowability and stability with moduli adjusted between 0.28 and 1.20 in the coarse fraction for improving density. The amount of the fine fraction was held constant. It was shown that a density-optimized batch showed self-flowing behaviour, while the other batches needed to be vibrated. The bulk density of the unfired and fired ceramics was measured. The castable showing the best flowability with a distribution modulus of 0.80 in the coarse fraction also had the highest density and the smallest pore sizes with regard to the full range of pores. The pore sizes were measured by means of mercury porosimetry, optical microscopy and a visual method owing to the large range of pore sizes.

Download Full Article (PDF)

Keywords

Refractory castables, coarse fraction, flowability, density, pore size distribution

References

1 Buhr, A.: Refractories for steel secondary metallurgy, CN-Refractories, 6, [3], 19 – 30, (1999).

2 Peret, C.M., Gregolin, J.A., Faria, L.I.L., Pandolfelli, V.C.: Patent generation and the technological development of refractories and steelmaking, Refractories Applications and News, 12, [1], 10 – 14, (2007).

3 Semler, C.E.: Refractories review 2005 – Update from China, Refractories Applications and News, 10, [4], 6 – 22, (2005).

4 Braulio, M.A.L., Morbioli, G.G., Pandolfelli, V.C.: Advanced boron-containing Al2O3-MgO refractory castables, J. Am. Ceram. Soc., 94, [10], 3467 – 72, (2011).

5 Tomsu, F., Ulbricht, J.: Development trends of the material composition of highly stressed refractory concrete, (in German), Keramische Zeitschrift, 50, [9], 724 – 731, (1998).

6 Feys, D., De Schutter, G., Verhoeven, R.: Parameters influencing pressure during pumping of self-compacting concrete, Mater. Struct., 46, 533 – 555, (2013).

7 Myhre, B.: Let's make a castable! Part I, Refractories Applications and News,13, [3], 16 – 24, (2008).

8 Silva, A.P., Segadaes, A.M., Devezas, T.C.: Particle distribution design in a self-flow alumina refractory castable without cement, Adv. Sci. Tech., 45, 2260 – 2265, (2006).

9 De Larrard, F., Sedran, T.: Optimization of ultra-high-performance concrete by the use of a packing model, Cement Concrete Res., 24, [6], 997 – 1009, (1994).

10 Routschka, G.: Refractory materials (in German), Vulkan-Verlag Essen, 2nd edition, 1997.

11 Reed, J.S.: Principles of ceramics processing, 122, 150 ff., 219ff, John Wiley & Sons, Inc., 2nd edition, 1995.

12 Furnas, C.C.: Grading aggregates I – Mathematical relations for beds of broken solids of maximum density, Ind. Eng. Chem., 23, [9], 1052 – 1058, (1931).

13 Andreasen, A.: On the relationship of grading and interstices in products of loose grains, (in German), Colloid Polym. Sci., 50, 217 – 228, (1930).

14 Dinger, D.R., Funk, J.E.: Particle packing II – Review of packing of polydisperse particle systems, Interceram, 41, [2], 95 – 97, (1992).

15 Dinger, D.R., Funk, J.E.: Particle packing IV – Computer modelling of particle packing phenomena, Interceram, 42, [3], 150 – 152, (1993).

16 Zheng, J., Johnson, P.F., Reed, J.S.: Improved equation of the continuous particle size distribution for dense packing, J. Am. Ceram. Soc., 73, [5], 1392 – 98, (1990).

17 Funk, J.E., Dinger, D.R.: Predictive process control of crowded particulate suspensions, 327, 507, 566 f. Kluwer Academic Publishers, 1994.

18 Yu, S.-P., Wang, M.-C., Hon, M.-H.: Properties of alumina-zirconia-raphite refractories with particle size according to the andreasen model, J. Ceram. Soc. Jpn., 108, [8], 721 – 727, (2000).

19 Ulbricht, J., Burkhardt, K.: On the grading of coarse ceramic refractory materials, cfi/Ber.DKG, 76, [4], D9 – 12, (1999).

20 Sudduth, R.D.: A generalized model to predict the viscosity of solutions with suspended particles, I. J. Appl. Polym. Sci., 48, 25 – 36, (1993).

21 Amaral, M.D., Van Es, S., Asua, J.M.: Effect of the particle size distribution on the low shear viscosity of high-solid-content latexes, J. Appl. Polym. Sci.: Part A: Polymer chemistry, 42, 3936 – 3946, (2004).

22 Sudduth, R.D.: A generalized model to predict the viscosity of solutions with suspended particles, III. Effects of particle interaction and particle size distribution. J. Appl. Polym. Sci., 50, 123 – 147, (1993).

23 Sudduth, R.D.: A generalized model to predict the viscosity of solutions with suspended particles, IV. Determination of optimum particle-by-particle volume fractions, J. Appl. Polym. Sci., 52, 985 – 996, (1994).

24 Farris, R.J.: Prediction of the viscosity of multimodal suspensions from unimodal viscosity data, T. Soc. Rheol., 12, [2], 281 – 301, (1968).

25 Hoffman, R.L.: Factors affecting the viscosity of unimodal and multimodal colloidal dispersions, J. Rheol., 36, [5], 947 – 964, (1992).

26 Pivinskii, Y.E.: Conditions for the complete stability of ceramic slips, Glass Ceram., 28, [6], 373 – 376, (1971).

27 Dzuy, N.Q., Boger, D.V.: Yield stress measurement for concentrated suspensions, J. Rheol., 27, [4], 321 – 349, (1983).

28 Rhines, F.N.: Dynamic particle stacking. In Onoda, G.Y. and Hench, L.L., editor, Ceramic processing before firing, 321 – 341. John Wiley & Sons, 1978.

29 Chesters, J.H.: Steelplant refractories – Testing, research and development, 151, The United Steel Companies Ltd., Sheffield, 1957.

30 Lee, W.E., Zhang, S., Karakus, M.: Refractories: Controlled microstructure composites for extreme environments, J. Mater. Sci., 39, 6675 – 6685, (2004).

31 Klippel, U., Aneziris, C.G., Metzger, A.J.: Shaped coarse grained refractories by pressure slip casting, Adv. Eng. Mater., 13, [1 – 2], 68 – 76, (2011).

32 Schafföner, S., Aneziris, C.G., Berek, H., Hubalkova, J., Priese, A.: Fused calcium zirconate for refractory applications, J. Eur. Ceram. Soc.,33, 3411 – 3418, (2013).

33 R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2010, ISBN 3 – 900051 – 07 – 0.

34 Montgomery, D.C.: Design and analysis of experiments, John Wiley & Sons, 5th edition, 2001.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH