• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Numerical Prediction of Effective Thermal Conductivity of Refractory Materials: Methodology and Sensitivity Analysis

R. Zehmisch1, C. Demuth1, A. Al-Zoubi1, M.A.A. Mendes1, F. Ballani2, S. Ray1, D. Trimis1

1 Institute of Thermal Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 7, D-09596 Freiberg, Germany
2 Institute of Stochastics, Technische Universität Bergakademie Freiberg, Prüferstraße 9, D-09596 Freiberg, Germany

received November 10, 2013, received in revised form January 20, 2014, accepted March 14, 2014

Vol. 5, No. 2, Pages 145-154   DOI: 10.4416/JCST2013-00041

Abstract

The present paper deals with numerical predictions of the effective thermal conductivity (keff) of refractory materials. The composite is modelled using a geometry generation method; either the Coloured Dead Leaves Model (CDLM) or the modified version of the Random Sequential Adsorption (RSA) algorithm, for coarse grain components. On the other hand, there are constituents which could not be resolved by the computational model and are, therefore, treated as a continuous interstitial phase, termed as the ‘unresolved’ or the ‘rest’ material. The generated random geometry is discretised employing a uniform grid in the computational domain, where the heat conduction equation is solved with either the Thermal Lattice-Boltzmann Method (TLBM) or the Finite Volume Method (FVM). From the steady-state solution of the heat conduction equation, keff is determined using a simple averaged relation. This investigation also comprises the sensitivity analysis of the presented methodology with regard to the isotropy of generated geometry, the reproducibility of results, the employed shape of grains and the unknown thermal conductivity of ‘rest’ material. Results indicate that keff is linearly dependent on the last, whereas it is nearly insensitive to other parameters.

Download Full Article (PDF)

Keywords

Effective thermal conductivity, refractory materials, thermal lattice-Boltzmann method, random sequential adsorption, sensitivity analysis

References

1 Garbers-Craig, A.M.: How cool are refractory materials?, J. South. Afr. Inst. Min. Metall., 108, 491 – 506, (2008).

2 Tomeczek, J., Suwak, R.: Thermal conductivity of carbon-containing refractories, Ceram. Int., 28, 601 – 607, (2002).

3 Barea, R., Belmonte, M., Osendi, M.I., Miranzo, P.: Thermal conductivity of Al2O3/SiC platelet composites, J. Eur. Ceram. Soc., 23, 1773 – 1778, (2003).

4 Veyret, D., Cioulachtjian, S., Tadrist, L., Pantaloni, J.: Effective thermal conductivity of a composite material: a numerical approach, J. Heat Transfer, 115, 866 – 871, (1993).

5 Zhou, H., Zhang, S., Yang, M.: The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials, Compos. Sci. Technol., 67, 1035 – 1040, (2007).

6 Maxwell, J.C.: A treatise on electricity and magnetism. Clarendon Press, Oxford, 1873.

7 Petrasch, J., Schrader, B., Wyss, P., Steinfeld, A.: Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics, J. Heat Transfer, 130, 032602 (10 pp.), (2008).

8 Dondero, M., Cisilino, A.P., Carella, J.M., Tomba, J.P.: Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM, Int. J. Heat Mass Transfer, 54, 3874 – 3881, (2011).

9 He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282 – 300, (1998).

10 Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng., R, 63, 1 – 30, (2008).

11 Qian, J., Li, Q., Yu, K., Xuan, Y.: A novel method to determine effective thermal conductivity of porous materials, Sci. China, Ser. E: Technol. Sci., 47, 716 – 724, (2004).

12 Wang, M., Wang, J., Pan, N., Chen, S.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media, Phys. Rev. E, 75, 036702 (10 pp.), (2007).

13 Wang, M., Wang, J., Pan, N., Chen, S., He, J.: Three-dimensional effect on the effective thermal conductivity of porous media, J. Phys. D.: Appl. Phys., 40, 260 – 265, (2007).

14 Wang, M., He, J., Yu, J., Pan, N.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials, Int. J. Therm. Sci., 46, 848 – 855, (2007).

15 Wang, M., Pan, N., Wang, J., Chen, S.: Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media, J. Colloid Interface Sci., 311, 562 – 570, (2007).

16 Wang, M., Meng, F., Pan, N.: Transport properties of functionally graded materials, J. Appl. Phys., 102, 033514 (7 pp.), (2007).

17 Roungos, V., Aneziris, C.G., Berek, H.: Novel Al2O3-C refractories with less residual carbon due to nanoscaled additives for continuous steel casting applications, Adv. Eng. Mater., 14, 255 – 264, (2012).

18 Roungos, V., Aneziris, C.G.: Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives, Ceram. Int., 38, 919 – 927, (2012).

19 Brachhold, N., Aneziris, C.G., Stein, V., Roungos, V., Moritz, K.: Low carbon content and carbon-free refractory materials with high thermal shock resistance, (in German), Keram. Z., 64, 109 – 114, (2012).

20 Stein, V.: Contribution to the characteristic improvement of carbon bonded doloma refractories by addition of functional ceramic materials, Ph.D. thesis, Technische Universität Bergakademie Freiberg, Freiberger Forschungshefte, A 905, (2011).

21 Schwieger, K.-H.: Feuerfestmassen. In: Becker, G.W., Braun, D., Woebcken, W. (Eds.): Kunststoffhandbuch, Vol. 10 Duroplaste, (in German), Carl Hanser Verlag, München, 1096 – 1104, 1988.

22 Irie, S., Rappolt, J.: Phenolic resin for refractories. In: Pilato, L.: Phenolic Resins: A Century of Progress, Springer-Verlag, Berlin, chapter 19, 503 – 515, 2010.

23 Haynes, W.M., Lide, D.R., Bruno, T.J. (Eds.): CRC Handbook of Chemistry and Physics. 94th edition. CRC Press, Boca Raton, 2013.

24 Klein, C., Hurlbut, Jr., C.S.: Manual of Mineralogy. 21st edition. John Wiley & Sons, New York, 1999.

25 Martin, C.A., Sandler, J.K.W., Shaffer, M.S.P., Schwarz, M.-K., Bauhofer, W., Schulte, K., Windle, A.H.: Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Compos. Sci. Technol., 64, 2309 – 2316, (2004).

26 Slobodian, P., Riha, P., Lengalova, A., Svoboda, P., Saha, P.: Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection, Carbon, 49, 2499 – 2507, (2011).

27 Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of mineralogy - Vol. III: Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, 1997.

28 Thostenson, E.T., Chou, T.-W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization, J. Phys. D: Appl. Phys., 36, 573 – 582, (2003).

29 Granqvist, C.G., Buhrmann, R.A.: Ultrafine metal particles, J. Appl. Phys., 47, 2200 – 2219, (1976).

30 Kiss, L.B., Söderlund, J., Niklasson, G.A., Granqvist, C.G.: New approach to the origin of lognormal size distributions of nanoparticles, Nanotechnology, 10, 25 – 28, (1999).

31 Matheron, G.: Random sets and integral geometry. John Wiley & Sons, New York, 1975.

32 Feder, J.: Random sequential adsorption, J. Theor. Biol., 87, 237 – 254, (1980).

33 Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Springer-Verlag, New York, 2002.

34 Ballani, F., Daley, D.J., Stoyan, D.: Modelling the microstructure of concrete with spherical grains, Comput. Mater. Sci., 35, 399 – 407, (2006).

35 Goldstein, H., Poole, C.P., Safko, J.L.: Classical mechanics. Third edition, Addison-Wesley, San Francisco, 2002.

36 ISO 1151 – 1, Flight dynamics - Concepts, quantities and symbols – Part 1: Aircraft motion relative to the air, 1988.

37 Zehmisch, R., Al-Zoubi, A., Ray, S., Trimis, D., Ballani, F., van den Boogaart, K.G.: Numerical determination of effective thermal conductivity of refractory materials, Refractories Worldforum, 4, 181 – 186, (2012).

38 Qian, Y.H., d'Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479 – 484, (1992).

39 Peng, Y., Shu, C., Chew, Y.T.: A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity, J. Comput. Phys., 193, 260 – 274, (2004).

40 D'Orazio, A., Succi, S.: Boundary conditions for thermal lattice Boltzmann simulations. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (Eds.): Computational Science — ICCS 2003, Lecture Notes in Computer Science, 2657, Springer-Verlag, Berlin, 977 – 986, 2003.

41 Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125 – 3131, (1962).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH