Articles
All articles | Recent articles
Experimental Characterization and Thermomechanical Modelling of Microstructure Interactions in Cellular Carbon Magnesia Refractories
G. Falk1, A. Jung1, W. da Silveira1, S. Diebels2
1 Universität des Saarlandes, Research Group Structural and Functional Ceramics, Campus C6 3, D-66123 Saarbrücken, Germany
2 Universität des Saarlandes, Institute of Applied Mechanics, Campus C6 3, D-66123 Saarbrücken, Germany
received October 18, 2013, received in revised form December 27, 2013, accepted March 31, 2014
Vol. 5, No. 2, Pages 101-114 DOI: 10.4416/JCST2013-00029
Abstract
Experimental results and computational solutions regarding microstructural interactions and their influence on the thermomechanical strength of cellular carbon foams reinforced with yttria-stabilized zirconia (YSZ) and silicon carbide (SiC) coatings are presented. The computational approach is related to the quantification of failure stresses as a function of the microstructural size under thermal shock loading and under hot bending with microstructural-based finite element analysis. The numerical results of this simplified computational approach are correlated to the experimentally motivated Hasselman's equations. Correlated to the computational results, these experimental result parameters for final crack length and final crack density allow conclusions to be drawn about the most suitable microstructural foam parameters in order to achieve advanced thermal shock characteristics for next-generation hybrid carbon foam refractories.
Download Full Article (PDF)
Keywords
Porous carbon, thermal shock, FEM modelling
References
1 Krass, Y. R.: World production fo steel and magnesia refractories: State of the art and trends of development, Refractories and Industrial Ceramics, 42, 417 – 425, (2001).
2 Ceylantekin, R., Aksel, C.: Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation, Ceramics International, 38, 995 – 1002, (2012).
3 Yarushina, T. V., Akbashev, V. A., Plyukhin, V. A., Akbashev, A. M., Gyrlya, I. M., Parshikov, A. N.: Periclase-carbon composite refractories with new complex binder, Refractories and Industrial Ceramics, 48, 170 – 175, (2007).
4 Suvorov, S. A., Mozhzherin, A. V., Sakulin, A. V., Ordin, V. G., Rusinova, E. V.: Functional carbonized refractories, ibid. 46, 268 – 272, (2005).
5 Perepelitsyn, V. A., Kutalov, V. G.: Efficient refractory materials for metallurgy and casting production, ibid. 53, 50 – 53, (2012).
6 Gallego, N. C., Klett, J. W.: Carbon foams for thermal management, Carbon, 41, 1461 – 1466, (2003).
7 Chen, C., Kennel, E. B., Stiller, A. H., Stansberry, P. G., Zondlo, J. W.: Carbon foam derived from various precursors, ibid. 44, 1535 – 1543, (2006).
8 Li, S., Tian, Y., Zhong, Y., Yan, X., Song, Y., Guo, Q., Shi, J., Liu, L.: Formation mechanism of carbon foams derived from mesophase pitch, ibid. 49, 618 – 624, (2011).
9 Inagaki, M., Morishita, T., Kuno, A., Kito, T., Hirano, M., Suwa, T., Kusakawa, K.: Carbon foams prepared from polyimide using urethane foam template, ibid. 42, 497 – 502, (2004).
10 Lei, S., Guo, Q., Shi, J., Liu, L.: Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength, ibid. 48, 2644 – 2673, (2010).
11 Chen, Y., Chen, B.-Z., Shi, X.-C., Xu, H., Hu, Y.-J., Yuan, Y., Shen, N.-B.: Preparation of pitch-based carbon foam using polyurethane foam template, ibid. 45, 2126 – 2139, (2007).
12 Li, X., Basso, M. C., Braghiroli, F. L., Fierro, V., Pizzi, A., Celzard, A.: Tailoring the structure of cellular vitreous carbon foams, ibid. 50, 2026 – 2036, (2012).
13 Sanchez-Coronado, J., Chung, D. D. L.: Thermomechanical behavior of a graphite foam, ibid. 41, 1175 – 1180, (2003).
14 Celzard, A., Tondi, G., Lacroix, D., Jeandel, G., Monod, B., Fierro, V., Pizzi, A.: Radiative properties of tannin-based, glasslike, carbon foams, ibid. 50, 4102 – 4113, (2012).
15 Gaies, D., Faber, K. T.: Thermal properties of pitch-derived graphite foam, ibid. 40, 1131 – 1150, (2002).
16 Latella, B. A., Liu, T.: The initiation and propagation of thermal shock cracks in graphite, ibid. 44, 3043 – 3048, (2006).
17 Qiu, H., Han, L., Liu, L.: Properties and microstructure of graphitised ZrC/C or SiC/C composites, ibid. 43, 1021 – 1025, (2005).
18 Bag, M., Adak, S., Sarkar, R.: Study on low carbon containing MgO-C refractory: Use of nano carbon, Ceramics International, 38, 2339 – 2346, (2012).
19 Silveira, W. D., Falk, G.: Production of refractory materials with cellular matrix by colloidal processing, Refractories Worldforum, 4, 143 – 150, (2012).
20 Silveira, W. d., Falk, G.: Reinforced cellular carbon matrix-MgO composites for high temperature appliactions: Microstructure aspects and colloidal processing, Adv. Eng. Mat., 13, 982 – 989, (2011).
21 Damhof, F., Brekelmans, W. A. M., Geers, M. G. D.: Non-local modelling of cyclic thermal shock damage including parameter estimation, Eng. Fract. Mech., 78, 1846 – 1861, (2011).
22 Damhof, F., Brekelmans, W. A. M., Geers, M. G. D.: Non-local modeling of thermal shock damage in refractory materials, Eng. Fract. Mech., 75, 4706 – 4720, (2008).
23 Harmuth, H., Rieder, K., Krobath, M., Tschegg, E.: Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials, Mat. Sci. Eng. A, 214, 53 – 61, (1996).
24 Lu, T. J., Fleck, N. A.: The thermal shock resistance of solids, Acta Mater., 46, 4755 – 4768, (1998).
25 Hartmuth, H., Tschegg, E. K.: A fracture mechanics approach for the development of refractory materials with reduced brittleness, Fatigue Fract. Engng. Mater. Struct., 20, 1585 – 1603, (1997).
26 Orenstein, R. M., Green, D. J.: Thermal shock behavior of open-cell ceramic foams, J. Am. Ceram. Soc., 75, 1899 – 1905, (1992).
27 Swain, M. V.: R-Curve behavior and thermal shock resistance of ceramics, ibid. 73, 621 – 628, (1990).
28 Hasselmann, D. P. H.: Unified Theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am Ceram. Soc., 52, 600 – 604, (1969).
29 Salvini, V. R., Pandolfelli, V. C., Bradt, R. C.: Extension of Hasselman's thermal shock theory for crack/microstructure interactions in refractories, Ceramics International, 38, 5369 – 5375, (2012).
30 Grasset-Bourdel, R., Alzina, A., Huger, M., Gruber, D., Harmuth, H., Chotard, T.: Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia-spinel refractories, J. Europ. Ceram. Soc., 32, 989 – 999, (2012).
31 Schmitt, N., Burr, A., Berthaud, Y., Poirier, J.: Micromechanics applied to the thermal shock behavior of refractory ceramics, Mechanics of Materials, 34, 725 – 747, (2002).
32 Jiang, J.-W., Wang, J.-S., Li, B.: Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach, Phys. Rev. B, 80, 205429, (2009).
33 Dubrovinsky, L. S., Saxena, S. K.: Thermal expansion of Periclase (MgO) and Tungsten (W) to melting temperatures, Phys. Chem. Minerals, 24, 547 – 550, (1997).
34 Mei, H., Cheng, L., Zhang, L., Xu, Y.: Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures, Carbon, 45, 2195 – 2204, (2007).
35 Diebels, S., Steeb, H.: The size effect in foams and its theoretical and numerical investigation, The Royal Society Proceedings: Mathematical, Physical and Engineering Sciences, 458, 2869 – 2883, (2002).
36 Nieh, T. G., Higashi, K., Wadsworth, J.: Effect of cell morphology on the compressive properties of open-cell aluminum foams, Materials Science and Engineering A, 283, 105 – 110, (2000).
37 Onck, P. R., Andrews, E. W., Gibson, L. J.: Size effects in ductile cellular solids. Part I: Modeling, Inter. J. Mech. Sci., 43, 681 – 699, (2001).
38 Tekoglu, C., Gibson, L. J., Pardoen, T., Onck, P. R.: Size effects in foams: Experiments and modeling, Progress in Materials Science, 56, 109 – 138, (2011).
39 Christensen, R. M.: Mechanics of low density materials, J. Mech. Phys. Solids, 34, 563 – 578, (1986).
40 Gent, A. N., Thomas, A. G.: The formation of foamed elastic materials, J. Appl. Polymer Sci., 1, 107 – 113, (1959).
41 Gibson, L. J., Ashby, M. F., and, G. S. S., Robertson, C. I.: The mechanics of two-dimensional cellular materials, Proc. R. Soc. London, Ser. A, A 382, 25 – 42, (1986).
42 Meguid, S. A., Cheon, S. S., El-Abbasi, N.: FE modelling of deformation localization in metallic foams, Finite Elem. Anal. Des., 38, 631 – 643, (2002).
43 Warren, W. E., Kraynik, A. M.: The linear elastic properties of open-cell foams, J. Appl. Mech., 55, 341 – 346, (1988).
44 Deshpande, V. S., Fleck, N. A.: Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids, 48, 1253 – 1283, (2000).
45 Diebels, S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media, Granul. Matter, 2, 142 – 152, (2000).
46 Diebels, S., Steeb, H., Ehlers, W.: Microscopic and macroscopic modelling of foams, Proc. Appl. Math. Mech., 2, 156 – 157, (2003).
47 Ehlers, W.: A single-surface yield function for geomaterials, Arch. Appl. Mech., 65, 246 – 259, (1995).
48 Klett, J., Lowden, R., McMillan, A.: Oxidation protection of graphite foams, Oak Ridge National Laboratory, 2001.
49 Hasselmann, D. P. H.: Strength behavior of polycrystalline alumina subjected to thermal shock, J. Am. Ceram. Soc., 53, 490 – 495, (1970).
50 Hasselman, D. P. H., Youngblood, G. E.: Enhanced thermal stress resistance of structural ceramics with thermal conductivity gradient, J. Am. Ceram. Soc., 61, 49 – 52, (1978).
51 Hasselman, D. P. H., Badaliance, R., Chen, E. P.: Thermal fatigue and its failure prediction for brittle ceramics. In: Thermal Fatigue of Materials and Components. 1976.
52 Lu, T. J., Fleck, N. A.: The thermal shock resistance of solids, Acta Mater., 46, 4755 – 4768, (1998).
53 Bahr, H.-A., Balke, H.: Fracture analysis of a single edge cracked strip under thermal shock, Theoretical and Applied Fracture Mechanics, 8, 33 – 39, (1987).
54 Balke, H., Hofinger, I., Häusler, C., Bahr, H.-A., Weiß, H.-J., Kirchhoff, G.: Fracture mechanical damage modelling of thermal barrier coatings, Arch. Appl. Mech., 70, 193 – 200, (2000).
55 Cotterel, W. O., Ong, S. W., Qin, C.: Thermal Shock and Size Effects in Castable Refractories, J. Am. Ceram. Soc., 78, 2056 – 2064, (1995).
56 Soboyejo, W. O., Mercer, C.: Investigation of thermal shock in a high-temperature refractory ceramic: A fracture mechanics approach, J. Am. Ceram. Soc., 84, 1309 – 1314, (2001).
57 Damhof, F., Brekelmans, W. A. M., Geers, M. G. D.: Predictive FEM simulation of thermal shock damage in the refractory lining of steelmaking installations, J. Mat. Proc. Tech., 211, 2091 – 2105, (2011).
58 Bradley, F., Chaklader, A., Mitchell, A.: Thermal stress fracture of refractory lining components: Part I. Thermoelastic analysis, Metall. and Mater. Trans. B, 18, 355 – 363, (1987).
59 Knauder, J., Rathner, R.: Thermomechanical analysis of basic refractories in a bottom blowing converter, Veitsch-Radex Rundschau, 4, 354 – 364, (1990).
60 Knauder, J., Rathner, R.: Improved design of a bof lining based on thermomechanical analysis,, Veitsch-Radex Rundschau, 1, 203 – 212, (1990).
61 Rathner, R., Knauder, J. P., Schweiger, H. F.: Lining design and behavior of BOF's, ibid. 4, 327 – 342.
62 Andreev, K., Harmuth, H.: FEM simulation of the thermo-mechanical behaviour and failure of refractories—a case study, J. Mater. Process. Technol., 143 – 144, 72 – 77, (2003).
63 Gruber, D., Andreev, K., Harmuth, H.: FEM simulation of the thermomechanical behaviour of the refractory lining of a blast furnace, J. Mater. Process. Technol., 155 – 156, 1539 – 1543, (2004).
64 Prompt, N., Ouedraogo, E.: High temperature mechanical characterisation of an alumina refractory concrete for Blast Furnace main trough. Part I. General context, J. Eur. Ceram. Soc., 28, 2859 – 2865, (2008).
65 Stabler, J., Baker, G.: Fractional step methods for thermo-mechanical damage analyses at transient elevated temperatures, Int. J. Num. Meth. Eng., 48, 761 – 785, (2000).
66 Luccioni, B. M., Figueroa, M. I., Danesi, R. F.: Thermo-mechanic model for concrete exposed to elevated temperatures, Eng. Struct., 25, 729 – 742, (2003).
67 Nechnech, W., Meftah, F., Reynouard, J. M.: An elasto-plastic damage model for plain concrete subjected to high temperatures, Eng. Strct., 24, 597 – 611, (2002).
68 Pearce, C. J., Nielsen, C. V., Bicanic, N.: Gradient enhanced thermo-mechanical damage model for concrete at high temperatures including transient thermal creep, Int. J. Numer. Anal. Meth. Geomech., 28, 715 – 735, (2004).
69 Stabler, J., Baker, G.: On the form of free energy and specific heat in coupled thermo-elasticity with isotropic damage, Int. J. of Solids and Structures, 37, 4691 – 4713, (2000).
70 Stabler, J., Baker, G.: Fractional step methods for thermo-mechanical damage analyses at transient elevated temperatures, Int. J. Numer. Math. Eng., 48, 761 – 785, (2000).
71 Pabst, W., Gregorova, E., Ticha, G.: Elasticity of porous ceramics—A critical study of modulus-porosity relations, J. Eur. Ceram. Soc., 26, 1085 – 1097, (2006).
Copyright
Göller Verlag GmbH