• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 2 Statistical Analysis of Computed Tomography Data

Y. Onel, A. Lange, A. Staude, K. Ehrig, A. Kupsch, M.P. Hentschel, T. Wolk, B.R. Müller, G. Bruno

BAM Federal Institute for Materials Research and Testing, D-12200 Berlin, Germany

received August 23, 2013, received in revised form October 18, 2013, accepted November 18, 2013

Vol. 5, No. 1, Pages 13-22   DOI: 10.4416/JCST2013-00022

Abstract

Complementary to Part 1 of this work, the bi-continuous microstructure of porous synthetic cordierite ceramics for filtration applications was investigated using 3D x-ray computed tomography at different resolutions. Applying both Fast Fourier Transform and a newly developed image analysis algorithm, we quantitatively evaluated porosity and pore orientation. The statistical approach allows extraction of spatially resolved or average values. Porosity values based on x-ray absorption agree with mercury intrusion measurements, while pore orientation factors agree with x-ray refraction data (Part 1 of this work), and with published crystallographic texture data.

Download Full Article (PDF)

Keywords

Pore orientation, porous ceramics, computed tomography, 3D microstructure

References

1 Readey, M.J., Rontanini, L.D.: Cordierite material useful in a heat source retainer and process for making the same. US Patent 4973566, (1990).

2 Saito, N., Nishimura, S.-Y., Kawano, M., Araki, S.-I., Sukenaga, S., Nakashima, K., Yasukouchi, T.: Fabrication of nitrogen-containing cordierite ceramics, J. Am. Ceram. Soc., 93, 2257 – 2263, (2010).

3 Merkel, G., Beall, D., Hickman, D., Vernacotola, M.: Effects of microstructure and cell geometry on performance of cordierite diesel particulate filters, SAE Technical Paper 2001 – 01 – 0193, 2001, doi:10.4271/2001 – 01 – 0193.

4 Shyam, A., Lara-Curzio, E., Pandey, A., Watkins, T.R., More, K.L.: The thermal expansion, elastic and fracture properties of porous cordierite at elevated temperatures, J. Am. Ceram. Soc., 95, 1682 – 1691, (2012).

5 Bruno, G., Efremov, A.M., An, C.P., Wheaton, B.R., Hughes, D.J: Connecting the macro and microscopic strain response in porous ceramics, Part II - Microcracking, J. Mater. Sci., 47, 3674 – 3689, (2012).

6 Gordon, T., Shyam, A., Lara-Curzio, E.: The relationship between microstructure and fracture toughness for fibrous materials of diesel particulate filters, J. Am. Ceram. Soc., 93, 1120 – 1126, (2010).

7 Bubeck, C.: Direction dependent mechanical properties of extruded cordierite honeycombs, J. Eur. Ceram. Soc., 29, 3113 – 3119, (2009).

8 Kupsch, A., Lange, A., Hentschel, M.P., Onel, Y., Wolk, T., Staude, A., Ehrig, K., Müller, B.R., Bruno, G.: Evaluating porosity in cordierite-based diesel particulate filter materials. Part 1 X-Ray Refraction. submitted to J. Ceram. Sci. Techn. (2013).

9 Bruno, G., Vogel, S.: Calculation of the average coefficient of thermal expansion in oriented cordierite polycrystals, J. Am. Ceram. Soc., 91, 2646 – 2652, (2008).

10 Kingery, W.D.: Factor affecting thermal stress resistance of ceramic materials, J. Am. Ceram. Soc., 38, 3 – 15, (1955).

11 Lachman, I.M., Bagley, R.D. and Lewis, R.M.: Thermal expansion of extruded cordierite ceramics, J. Am. Ceram. Soc., 60, 202 – 205, (1981).

12 Bruno, G., Kachanov, M.: On modeling of microstresses and microcracking generated by cooling of polycrystalline porous ceramics, J. Eur. Ceram. Soc., 33, 1995 – 2005, (2013).

13 Bruno, G., Kilali, Y., Efremov, A.M.: Impact of the non-linear character of the compressive stress-strain curves on thermal and mechanical properties of porous microcracked ceramics, J. Eur. Ceram. Soc., 33, 211 – 219, (2013).

14 Bruno, G., Kachanov, M.: Porous microcracked ceramics under compression: micromechanical model of non-linear behavior, J. Eur. Ceram. Soc., 33, 2073 – 2085, (2013).

15 Bruno, G., Efremov, A.M., Wheaton, B.R., Bobrikov, I., Simkin, V.G., Misture, S.:. Micro- and macroscopic thermal expansion of stabilized aluminum titanate, J. Eur. Ceram. Soc., 30, 2555 – 2562, (2010).

16 Bruno, G., Efremov, A.M., Webb, J.E.: The correlation between the coefficient of thermal expansion and the lattice mechanical properties of aluminum titanate, Acta Mater., 58, 6649 – 6655, (2010).

17 Bruno, G., Garlea, V.O., Muth, J., Efremov, A.M., Watkins, T.J., Shyam, A.: Temperature dependent microstress evolution in microcracked β-eucryptite, Acta Mater., 60, 4982 – 4996, (2012).

18 Cleveland, J.J., Bradt, R.C.: Grain size/microcracking relations for pseudobrookite oxides, J. Am. Ceram. Soc., 61, 478 – 481, (1978).

19 Ohya, Y., Nakagawa, Z.: Measurement of crack volume due to thermal expansion anisotropy of aluminum titanate ceramics, J. Mater. Sci., 31, 1555 – 1559, (1996).

20 Ohya, Y., Takahashi, Y., Nakagawa, Z.: Thermal expansion of grain boundary cracked aluminum titanate, J. Mater. Sci., 31, 1361 – 1365, (1996).

21 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials, P. Roy. Soc. Lond. A Mat., 382, 43 – 59, (1982).

22 Bruno, G., Efremov, A.M., Levandovsky, A.N., Clausen, B.: Connecting the macro and microscopic strain response in porous ceramics: modeling and experimental validation, J. Mater. Sci., 46, 161 – 173, (2011).

23 Lucas, R.: On the time-law of the capillary rise of liquids, (in German), Kolloid Z., 23, 15 – 22, (1918).

24 Washburn, E.W.: The dynamics of capillary flow, Phys. Rev., 17, 273 – 283, (1921).

25 Andersson, L., Larsson, P.T., WÃ¥gberg, L., Bergström, L.: Evaluating pore space in macroporous ceramics with water-based porosimetry, J. Am. Ceram. Soc., 96, 1916 – 1922, (2013).

26 Suzuki, Y., Kondo, N., Ohji, T., Morgan, P.E.D.: Uniformly porous composites with 3-D network structure (UPC-3D) for high-temperature filter applications, Int. J. Appl. Ceram. Tech., 1, 76 – 85 (2004).

27 Park, J.K., Lee, J.S., Lee, S.I.: Preparation of porous cordierite using gelcasting method and its feasibility as a filter, J. Porous Mat., 9, 203 – 210, (2002).

28 Sandoval, M.L., Camerucci, M.A., Tomba-Martinez, A.G.: High temperature mechanical behavior of cordierite-based porous ceramics prepared by modified cassava starch thermogelation, J. Mater. Sci., 47, 8013 – 8021, (2012).

29 Živcová-Vlčková, Z., Locs, J., Keuper, M., Sledlářová, I., Chmelíčková, M.: Microstructural comparison of porous oxide ceramics from the system, Al2O3-ZrO2 prepared with starch as a pore-forming agent, J. Eur. Ceram. Soc., 32, 2163 – 2172, (2012).

30 Kardjilov, N., Manke, I., Hilger, A., Strobl, M., Banhart, J.: Neutron imaging in materials science, Materials Today, 14, 248 – 256, (2011).

31 Manke, I., Strobl, M., Kardjilov, N., Hilger, A., Treimer, W., Dawson, M., Banhart, J.: Investigation of soot sediments in particulate filters and engine components. Nucl. Instrum. Meth. A, 610, 622 – 626, (2009).

32 Strobl, M., Treimer, W., Ritzoulis, C., Wagh, A.G., Abbas, S., Manke, I.: The new V12 ultra-small-angle neutron scattering and tomography instrument at the Hahn-Meitner-Institut, J. Appl. Crystallogr., 40, 463, (2007).

33 Williams, S.H., Hilger, A., Kardjilov, N., Manke, I., Strobl, M., Douissard, P.A., Martin, T., Riesemeier, H., Banhart, J.: Detection equipment for micro imaging with neutrons, J. Instrumentation, 7, 1 – 25, (2012).

34 Voigt, C., Jäckel, E., Aneziris, C.G., Hubálková, J.: Investigations of reticulate porous alumina foam ceramics based on different coating techniques with aid of μCT and statistical characteristics, Ceram. Int., 39, 2415 – 2422, (2013).

35 Grothausmann, R., Zehl, G., Manke, I., Fiechter, S., Bogdanoff, P., Dorbandt, I., Kupsch, A., Lange, A., Hentschel, M., Schumacher, G., Banhart, J.: Quantitative structural assessment of heterogeneous catalysts by electron tomography, J. Am. Chem. Soc., 133, 18161 – 18171, (2011).

36 Roberts, A.P., Garboczi, E.J.: Elastic properties of model porous ceramics, J. Am. Ceram. Soc., 83, 3041 – 3048, (2000).

37 Zhao, F., Landis, H.R., Skerlos, S.J.: Modeling of porous filter permeability via image-based stochastic reconstruction of spatial porosity correlations, Environ. Sci. Tech., 39, 239 – 247, (2006).

38 Gulati, S.: Thermal stresses in ceramic wall-flow diesel filters. SAE Technical paper, 830079, (1983).

39 Bruno, G., Pozdnyakova, I., Efremov, A.M., Levandovskyi, A.N., Clausen, B., Hughes, D.J.: Thermal and mechanical response of industrial porous ceramics, Mater. Sci. Forum, 652, 191 – 196, (2010).

40 Stafford, R.J., Golovin, K.B., Dickinson, A., Watkins, T.R., Shyam, A., Lara-Curzio, E.: Comparison of elastic moduli of porous cordierite by flexure and dynamic test methods. In: Advances in bioceramics and porous ceramics V, ed. by Roger Narayan, Paolo Colombo, Michael Halbig, Sanjay Mathur. DOI: 10.1002/9781118217504.ch22.

41 Bruno, G., Efremov, A.M., Clausen, B., Balagurov, A.M., Simkin, V.N., Wheaton, B.R., Webb, J.E., Brown, D.W.: On the stress-free lattice expansion of porous cordierite. Acta Mater., 58, 1994 – 2003, (2010).

42 Bruno, G., Efremov, A.M., An, C.P., Nickerson, S.T.: Not all microcracks are born equal: thermal vs. mechanical microcracking in porous ceramics, In Widjaja S, Singh D (Eds), Advances in bioceramics and porous ceramics IV – Ceramic Engineering & Science Proc., 32:137 – 152, (2011).

43 Görner, W., Hentschel, M.P., Müller, B.R., Riesemeier, H., Krumrey, H., Ulm, G. Diete, W., Klein, U., Frahm, R.: BAMline: The first hard x-ray beamline at BESSY II, Nucl. Instrum. Meth. A, 467 – 468, 703 – 706, (2001).

44 Rack, A., Zabler, S., Müller, B.R., Riesemeier, H., Weidemann, G., Lange, A., Goebbels, J., Hentschel, M.P., Görner, W.: High resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II), Nucl. Instrum. Meth. A, 586, 327 – 344, (2008).

45 Lange, A., Hentschel, M.P., Kupsch, A., Müller, B.R.: Numerical correction of x-ray detector backlighting, Int. J. Mat. Res., 103, 174 – 178, (2012).

46 Kupsch, A., Hentschel, M.P., Lange, A., Müller, B.R.: How to correct x-ray detector backlighting, (in German), MP Mater. Test., 55, 577 – 581, (2013).

47 Weitkamp, T., Haas, D., Wegrzynek, D., Rack, A.: ANKAphase: Software for single-distance phase-retrieval from inline x-ray phase-contrast radiographs, J. Synchrotron Rad., 18, 617 – 629, (2011).

48 Schuster, A.: On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, Terr. Magn., 3, 13 – 41, (1898).

49 Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm, J. Opt. Soc. Am. A, 1, 612 – 619, (1984).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH