• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Effect of In Situ-Formed Cerium Hexaaluminate Precipitates on Properties of Alumina -24 Vol% Zirconia (1.4Y) Composites

F. Kern

University of Stuttgart, IFKB, Allmandring 7B, D-70569 Stuttgart, Germany

received May 14, 2013, received in revised form June 18, 2013, accepted August 5, 2013

Vol. 4, No. 4, Pages 177-186   DOI: 10.4416/JCST2013-00014

Abstract

In situ-platelet-reinforced zirconia-toughened alumina ceramics have become established materials, successfully replacing alumina and zirconia in hip implants. While the beneficial effect of the in situ toughening seems undoubted, this toughening mechanism is still not fully understood.

A nanocomposite ZTA containing 24 vol% partially stabilized zirconia (1.4Y-TZP) was reinforced with 10 vol% cerium hexaaluminate (CA6) by reacting in situ-reduced ceria with alumina during hot pressing. The mechanical properties, evolution of microstructure and phase composition of the CA6-containing ZTA were compared with the properties of the non-reinforced reference.

The unreinforced ZTA24 shows a microstructure with modular matrix grains and ultrafine zirconia dispersion. High strength of 1150 MPa but moderate toughness of 5 MPa·√m and low transformability of the zirconia dispersion was observed. The CA6-reinforced material shows higher toughness and transformability combined with a trade-off in hardness and strength. The CA6 precipitates are rod-shaped, well dispersed and oriented normal to the pressing direction. The formation of CA6 especially at sintering temperatures exceeding 1500 °C is associated with microstructural coarsening and a broadening of grain size distribution of matrix and dispersion, making the zirconia more transformable. Crack deflection at matrix-precipitate grain boundaries was not observed.

Download Full Article (PDF)

Keywords

Alumina, zirconia, platelets, mechanical properties, microstructure

References

1 Wang, J., Stevens. R.: Zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci., 24, 3421 – 3440, (1989).

2 Becher, P.F.: Slow crack growth behavior in transformation-toughened Al2O3-ZrO2(Y2O3) ceramics, J. Am. Ceram. Soc., 66, [7], 485 – 488, (1983).

3 Claussen, N.: Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase, J. Am. Ceram. Soc., 59, [1 – 2], 49 – 51, (1976).

4 Gregori, G., Burger, W., Sergo, V.: Piezo-spectroscopic analysis of the residual stresses in zirconia-toughened alumina ceramics: the influence of the Tetragonal-to-monoclinic transformation, Mater. Sci. Eng. A, 271, 401 – 406, (1999).

5 Garcia D.E., Rödel, J., Claussen, N.: Subcritical crack growth and R-curve behavior in Al2O3-Toughened Y-TZP, in Science and Technology of Zirconia V. Technomic Publishing, Lancaster, USA, 1993.

6 Cutler, R.A., Mayhew, R.J., Prettyman, K.M., Virkar, A.V.: High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength, J. Am. Ceram. Soc., 74, [1], 179 – 86, (1991).

7 Burger, W., Richter, H.G.: High strength and toughness alumina matrix composites by transformation toughening and in situ platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng. Mat., 192 – 195, 545 – 548, (2001).

8 Chevalier, J., Grandjean, S., Kuntz, M., Pezzotti, G.: On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications, Biomaterials, 30, [29], 5279 – 5282, (2009).

9 Wu, Y., Zhang, Y., Huang, X., Guo, J.: In-situ growth of needle-like LaAl11O18 for reinforcement of alumina composites, Ceram. Int., 27, 903 – 906, (2001).

10 Jin, X., Gao, L.: Effects of powder preparation method on the microstructure and mechanical performance of ZTA/LaAl11O18 composites, J. Eur. Ceram. Soc., 24, 653 – 659, (2004).

11 Huang, S., Li, L., Vleugels, J., Wang, P., Van der Biest, O.: Thermodynamic prediction of the nonstoichiometric phase Zr1-zCezO2-x in the ZrO2-CeO1.5-CeO2 system, J. Eur. Ceram. Soc., 23, 99 – 106, (2003).

12 Tsukuma, K.: Conversion from β-Ce2O3 · 11 Al2O3 to α-Al2O3 in tetragonal ZrO2 matrix, J. Am. Ceram. Soc., 83, [12], 3219 – 21, (2000).

13 Akin, I., Yilmaz, E., Sahin, F., Yucel, O., Goller, G.: Effect of CeO2 addition on densification and microstructure of Al2O3-YSZ composites, Ceram. Int., 37, 3273 – 3280, (2011).

14 Kern, F.: Structure-property relations in alumina-zirconia nanocomposites reinforced with in situ formed cerium hexaaluminate precipitates, Scripta Mater., 67, [12], 1007 – 1010, 2012.

15 Sommer, F., Landfried, R., Kern, F., Gadow, R.: Mechanical properties of zirconia toughened alumina with 10 – 24 vol% 1.5 mol% Y-TZP reinforcement, J. Eur. Ceram. Soc., 32, [15], 3905 – 3910, (2012).

16 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc., 64, [9], 539 – 543, (1981).

17 Braun, L.M., Benninson, S.J., Lawn, B.R.: Objective evaluation of short-crack toughness curves using indentation flaws: case study on alumina-based ceramics, J. Am. Ceram. Soc., 75, [11], 3049 – 57, (1992).

18 Dransmann, G., Steinbrech, R., Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., Heuer, A.: Indentation studies on Y2O3,-stabilized ZrO2: II, Toughness determination from stable growth of indentation-induced cracks, J. Am. Ceram. Soc., 77, [5], 1194 – 201, (1994).

19 Benzaid, R., Chevalier, J., Saadaoui, M., Fantozzi, G., Nawa, M., Diaz, L.A., Torrecillas, R.: Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications, Biomaterials, 29, 3636 – 3641, (2008).

20 Kern, F.: Gadolinia-Neodymia-Co-stabilized zirconia materials with high toughness and strength, J. Ceram. Sci. Techn., 3, [3], 119 – 130, (2012).

21 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, [6], C119 – 121, (1984).

22 Kosmac, T., Wagner, R., Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, [4], C72 – 73, (1981).

23 McMeeking, R., Evans, A.G.: Mechanics of transformation toughening in brittle materials, J. Am. Ceram. Soc., 65, [5], 242 – 246, (1982).

24 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, [8], 443 – 446, (1969).

25 Lube, T., Fett, T: A threshold stress intensity factor at the onset of stable crack extension of knoop indentation cracks, Eng. Fract. Mech., 71, 2263 – 2269, (2004).

26 Gutknecht, D., Chevalier, J., Garnier, V., Fantozzi, G.: Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application, J. Eur. Ceram. Soc., 27, 1547 – 1552, (2007).

27 Heuer, A.H., Claussen, N., Kriven, W.M., Rühle, M.: Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc., 65, [12], 642 – 650, (1982).

28 He, M.Y., Hutchinson, J.W.: Kinking of a crack out of an interface, J. Appl. Mech., 56, 270 – 278, (1989).

29 Lakiza, S.M., Lopato, L.M.: Phase diagram of the Al2O3-ZrO2-La2O3 system, J. Eur. Ceram. Soc., 25, 1373 – 1380, (2005).

30 Wang, C., Zinkevich, M., Aldinger, F.: Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics, Pure Appl. Chem., 79, (10), 1731 – 1753, (2007).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH