Articles
All articles | Recent articles
Nanospecific Guidance in REACH: A Comparative Physical-Chemical Characterization of 15 Materials with Methodical Correlations
W. Wohlleben1, L. Ma-Hock2, V. Boyko1, G. Cox1, H. Egenolf1, H. Freiberger3, B. Hinrichsen1, S. Hirth1, R. Landsiedel2
1 BASF SE, Dept. of Material Physics and Analytics, 67056 Ludwigshafen, Germany
2 BASF SE, Dept. of Experimental Toxicology, 67056 Ludwigshafen, Germany
3 BASF SE, Dept. of Heterogeneous Catalysis, 67056 Ludwigshafen, Germany
received October 19, 2012, received in revised form December 10, 2012, accepted February 6, 2013
Vol. 4, No. 2, Pages 93-104 DOI: 10.4416/JCST2012-00045
Abstract
The REACH legislation deals with the Registration, Evaluation, Authorization and Restriction of Chemical substances in Europe. Here we provide a comparative physical-chemical characterization with standardized methods that adhere to the recent REACH guidance for nanomaterials. The suite of materials comprises two pigment-size reference materials, and 13 engineered nanomaterials, thereof four from the OECD sponsorship program. We report for each material on 20 endpoints for physical-chemical properties. Since toxicological effects and occupational exposures have already been reported for several of these materials, our results provide the basis for the exploration of grouping approaches. On the methodical level, our results provide a cross-validation where several methods report the same endpoint. This comparison reveals redundancies in the guidance and allows us to identify the most effective methods.
Download Full Article (PDF)
Keywords
Suspension, size distribution, dissolution, photocatalysis, regulation
References
1 EC (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial . http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF. Accessed 12 January 2012
2 RIPoN (2011) Specific advice on fulfilling information requirements for nanomaterials under REACH (RIP-oN 2). http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon2.pdf. Accessed 12 January 2012
3 ECHA: Guidance on information requirements and chemical safety assessment: Appendix R7 – 1 Recommendations for nanomaterials applicable to Chapter R7a - Endpoint specific guidance - ECHA-12-G-03-EN . 30 – 4-2012.
4 OECD (2009) Guidance manual for the testing of manufactured nanomaterials: OECD sponsorship program.
5 OECD (2009) Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials.
6 OECD : Guidance Manual for the testing of manufactured nanomaterials: OECD's sponsorship program; first revision. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, 25, ENV/JM/MONO(2009)20/REV, (2010).
7 Krug, H.F., Wick P.: Nanotoxicology: an interdisciplinary challenge, Angew. Chem. Int. Ed., 50, 1260 – 1278, (2011).
8 Landsiedel, R., Ma-Hock, L., Kroll, A., Hahn, D., Schnekenburger, J., Wiench, K., Wohlleben, W.: Testing metal-oxide nanomaterials for human safety, Adv. Mater., 22, 2601 – 2627, (2010).
9 Kroll, A., Pillukat, M.H., Hahn, D., Schnekenburger, J.: Current in vitro methods in nanoparticle risk assessment: limitations and challenges, Eur. J. Pharm. Biopharm, 72, 370 – 377, (2009).
10 Schulze, C., Kroll, A., Lehr, C.-M., Schäfer, U.F., Becker, K., Schnekenburger, J., Schulze-Isfort, C., Landsiedel, R., Wohlleben, W.: Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media, Nanotoxicology, 2, 51 – 61, (2008).
11 Schaefer, J., Schulze, C., Marxer, E.E.J., Schaefer, U.F., Wohlleben, W., Bakowsky, U., Lehr, C.M.: Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions, ACS Nano, 6, 4603 – 4614, (2012).
12 Schulze, C., Schaefer, U.F., Ruge, C.A., Wohlleben, W., Lehr, C.M.: Interaction of metal oxide nanoparticles with lung surfactant protein A, Eur. J. Pharm. Biopharm., 77, 376 – 383, (2011).
13 Kroll, A., Dierker, C., Rommel, C., Hahn, D., Wohlleben, W., Schulze-Isfort, C., Gobbert, C., Voetz, M., Hardinghaus, F., Schnekenburger, J.: Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays, Part. Fibre Toxicol., 8, 9, (2011).
14 Liden, G.: The european commission tries to define nanomaterials, Ann. Occup. Hyg., 55, 1 – 5, (2011).
15 Wohlleben, W.: Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas, J. Nanoparticle Res., 14, 1300 (2012).
16 Calzolai, L., Gilliland, D., Rossi, F.: Measuring nanoparticles size distribution in food and consumer products: a review, Food Addit. Conta.: Part A, 29, 1183 – 1193, (2012).
17 The NanoCare Consortium. Kuhlbusch, T.A.J., Krug, H. and Nau, K. (eds)(2009) NanoCare. Health related Aspects of Nanomaterials. Final Scientific Report.
18 Wiench, K., Wohlleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., Landsiedel, R.: Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate daphnia magna, Chemosphere, 76, 1356 – 1365, (2009).
19 Singh, C., Friedrichs, S., Gibson, N., Jensen, K.A., Levin, M., Birkedal, R., Pojana, G., Wohlleben, W., Schulte, S., Wiench, K., Marshall, D., Hund-Rinke, K., Kördel, W., Klein, C.L. (2011): NM-Series of Representative Manufactured Nanomaterials: Zinc Oxide NM-110, NM-111, NM-112, NM-113. Characterisation and test item preparation, EUR Report 25066.
20 Gamble, J.F.: Crystalline silica and Lung cancer: A critical review of the occupational epidemiology literature of exposure-response studies testing this hypothesis, Crit. Rev.Toxicol., 41, 404 – 465, (2011).
21 Merget, R., Bauer, T., Kupper, H.U., Philippou, S., Bauer, H.D., Breitstadt, R., Bruening, T.: Health hazards due to the inhalation of amorphous silica, Arch. Toxicol., 75, 625 – 634, (2002).
22 Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A.O., van Ravenzwaay, B., Landsiedel, R.: Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months, Toxicol. Sci., 112, 468 – 481, (2009).
23 Pott, F., Roller, M.: Carcinogenicity study with nineteen granular dusts in rats, Eur. J. Oncol., 10, 249 – 281, (2005).
24 Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H.B., Yeh, J.I., Zink, J.I., Nel, A.E.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2, 2121 – 2134, (2008).
25
26 Cheary R.W., Coelho A.A.: Axial divergence in a conventional X-ray powder diffractometer. I. theoretical foundations, J. Appl. Crystallogr., 31, 851 – 861, (1998).
27 Bruker AXS GmbH KG (2012) TOPAS.
28 Balzar, D.: Microstructure Analysis from Diffraction. International Union of Crystallography, (1999).
29 Rootare, H.M., Prenzlow C.F.: Surface areas from mercury porosimeter measurements, J. Phys. Chem., 71, 2733 – 2736, (1967).
30 Ritter, H.L., Drake, L.C.: Pore size distribution in porous materials. I. pressure porosimeter and determination of complete macropore size distributions, Ind. Eng. Chem. Anal. Ed., 17, 782 – 786, (1945).
31 SCENIHR (Scientific committee on emerging and newly identified health risks) (2009) Risk assessment of products of nanotechnologies. http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf. Accessed 12 January 2012
32 Misra, S.K., Dybowska, A., Berhanu, D., Luoma, S.N., Valsami-Jones, E.: The complexity of nanoparticle dissolution and its importance in nanotoxicological studies, Sci. Total Environ., 438, 225 – 232, (2012).
33 Stefaniak, A.B., Guilmette, R.A., Day, G.A., Hoover, M.D., Breysse, P.N., Scripsick, R.C.: Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution, Toxicol. in Vitro, 19, 123 – 134, (2005).
34 Galia, E., Nicolaides, E., Hörter, D., Löbenberg, R., Reppas, C., Dressman, J.B.: Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs, Pharmaceut. Res., 15, 698 – 705, (1998).
35 Liu, X., Hurt, R.H., Kane, A.B.: Biodurability of single-walled carbon nanotubes depends on surface functionalization, Carbon, 48, 1961 – 1969, (2010).
36 Bihari, P., Vippola, M., Schultes, S., Prätner, M., Khandoga, A.G., Reichel, C.A., Coester, C., Tuomi, T., Rehberg, M., Krombach, F.: Optimized dispersion of nanoparticles for biological in vitro and in vivo studies, Part. Fibre Toxicol., 5, 14, (2008).
37 Nepal, D., Geckeler K.E.: Proteins and Carbon Nanotubes: Close Encounter in Water. Small, 3, 1259 – 1265, (2007).
38 Patil, S., Sanberg, A., Heckert, E., Self, W., Seal, S.: Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential, Biomaterials, 28, 4600 – 4607, (2007).
39 von der Kammer, F., Legros, S., Larsen, E.H., Loschner, K., Hofmann, T.: Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation, TrAC Trend. Anal. Chem., 30, 425 – 436, (2011).
40 BAuA (2012) Kurzinfo der deutschen nationalen Auskunftsstelle: Charakterisierung von Nanomaterialien. http://www.reach-clp-helpdesk.de/de/Downloads/Kurzinfo/Kurzinfo%20Characterisierung%20Nanomaterialien.pdf?__blob=publicationFile&v=1. Accessed 3 October 2012
Copyright
Göller Verlag GmbH