• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Laser-Assisted Microwave Plasma Processing of Ceramic Coatings

M. Willert-Porada, P. Pontiller, H.-S. Park, A. Rosin

University of Bayreuth, Chair of Materials Processing, 95447 Bayreuth, Universitätsstr. 30, Germany

received March 4, 2013, received in revised form March 25, 2013, accepted April 4, 2013

Vol. 4, No. 1, Pages 1-10   DOI: 10.4416/JCST2013-00003

Abstract

The aim of Laser-Assisted Microwave Plasma Processing of materials, abbreviated as LAMPP, is to utilize a spatially well-confined laser beam to ignite and localize a microwave plasma plume as an energy source for the sintering, melting or recrystallization of ceramic coatings. The energy required for the high-temperature treatment is supplied to a significant extent from the microwave source that feeds the plasma while the laser beam is used to scan the microwave plasma over the surface area to be treated. The phenomena underlying ignition and sustainment of the plasma are described in respect of the two possible ignition mechanisms: Laser-Induced Breakdown, LIB, or Microwave-Induced Breakdown, MIB. The influence of the material to be processed on prevalence of one of these ignition mechanisms is discussed. Examples of equipment built in our laboratory to enable LAMPP in different atmospheres for different substrates and coatings are shown. As potential applications of LAMPP, re-melting of ceramic plasma-sprayed thermal barrier coatings and melting of non-stabilized ZrO2 ceramic for coating purposes are presented.

Download Full Article (PDF)

Keywords

Microwave plasma, ceramic melt processing, LIB, MIB

References

1 Samant, A.N., Harimkar, S.P., Dahotre, N.B.: Laser surface modifications of advanced ceramics – a modeling approach, JOM, 59, [8], 35 – 38, (2007).

2 DeBastiani, D., Modest, M.F., Stubican, V.S.: Mechanisms of reactions during CO2-laser processing of silicon carbide, J. Am. Ceram. Soc., 73, [7], 1947 – 1952, (1990).

3 Zhang, Z., Modest, M.F.: Energy requirements for ablation or decomposition of ceramics during CO2 and Nd:YAG laser machining, J. Laser Appl., 10, 212 – 219, (1998).

4 Ihlemann, J., Scholl, A., Schmidt, H., Wolff-Rottke, B.: Nanosecond and femtosecond excimer-laser ablation of oxide ceramics, Appl. Phys. A, 60, 411 – 417, (1995).

5 Gerk, Ch., Willert-Porada, M.: Laser-assisted microwave processing as a new tool in ceramic processing, Ceram. Trans., 111, 451 – 458, (2001).

6 Brockhaus, A., Korzec, D., Werner, F., Yuan, Y., Engemann, J.: Characterization of a microwave plasma by in situ diagnostics, Surf. Coat. Tech., 74 – 75, 431 – 442, (1995).

7 Spear, K.E.: Diamond-ceramic coating of the future, J. Am. Ceram. Soc., 72, 171 – 91, (1989).

8 Zocca, A., Colombo, P., Günster, J., Mühler, T., Heinrich, J.G.: Selective laser densification of lithium aluminosilicate glass ceramic tapes, Appl. Surf. Sci., 265, 610 – 614, (2013).

9 Gerk, Willert-Porada, DE 199 511 43.8, Offenlegungsschrift DE 199 51 143 A1, (1999).

10 Liu, Y., Baudelet, M., Richardson, M.: Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics, J. Anal. Atom. Spectrom., 25, 1316 – 1323, (2010).

11 Vikharev, A.L., Gorbachev, A.M., Ivanov, O.A., Kolysko, A.L.: Plasma parameters and stimulated UV emission of filamentary structures in a high-pressure microwave discharge, Zh. Eksp. Teor. Fiz., 106, 172 – 185 (1994), English version: J. Exp. Theor. Phys., 79, [1], 94 – 101, (1994).

12 Janzen, G.: Plasmatechnik, Hüthig-Verl., 159 ff, (1992).

13 Pajkic, Z.: Atmospheric pressure microwave plasma assisted coating processes for particulate materials, PhD Thesis, Shaker-Verlag, Aachen, Germany, ISBN 978 – 3-8322 – 8056 – 7, (2009).

14 Gerk, Ch.: Fabrication of ceramic eutectics with simultaneous laser and microwave application, (in German), PhD Thesis, University of Bayreuth, Fortschrittberichte VDI, Reihe 5, 619 (2001), ISBN 3 – 18 – 361905 – 9.

15 Willert-Porada, M., Gerdes, T., Gerk, Ch., Park, H.-S.: Combined processes, laser assisted microwave processing and sinter coating, in Advances in Microwave and Radio Frequency Processing, Ed. M. Willert-Porada, ISBN 3 – 540 – 43252 – 3, Springer Verlag, 836 – 848, (2006).

16 Kenkre, V.M., Skala, L., Weiser, M.W.: Theory of microwave interactions in ceramic materials: the phenomenon of thermal runaway, J. Mat. Sci., 26, 2483 – 89, (1991).

17 Gerdes, T., Park, H.-S., Rosin, A., Schmidt, A., Willert-Porada, M.: Microwave antenna array for high temperature material processing, Proc. IEEE-MTT-IMS 2010, ISSN 978 – 1-4244 – 6057 – 1/10, 1424 – 1427, (2010).

18 Knoll, M., Willert-Porada, M.: Synthesis of porous silicon nitride ceramic with a compositional gradient, Mater. Sci. Forum, 631 – 632, 477 – 483, (2010).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH