• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Preparation of Transparent Microspheres in the K0.5Na0.5NbO3 System by Laser Fusing

F.J. Hmood, C. Oelgardt, R. Görke, J.G. Heinrich

University of Technology Clausthal, Department for Engineering Ceramics, Zehntnerstr. 2a, 38678 Clausthal-Zellerfeld, Germany

received October 1, 2012, received in revised form November 20, 2012, accepted January 19, 2013

Vol. 4, No. 1, Pages 41-48   DOI: 10.4416/JCST2012-00040a

Abstract

Transparent microspheres have been synthesized from K0.5Na0.5NbO3 using a CO2-5 kW laser beam. The influence of the laser power on the transparent fraction of the resulting microspheres has been investigated. Particle size (d50), chemical composition, microstructure, crystallization behavior and the optical transmission of the resulting microspheres have been characterized. The particle size of the resulting microspheres is 62.5 μm ± 1.4 μm. The highest transparent fraction is 68.5 % ± 1.6 %, achieved with the optimum laser power of 2 kW. The glass transition temperature (Tg) and the first temperature to induce crystallization (Tx) have been detected with a differential scanning calorimeter (DSC). They are 503 °C and 529 °C respectively. The transparent microspheres have been heat-treated at different temperatures in order to study the development of the microstructure. The correlation between the transparent fraction and the applied laser power has been discussed.

Download Full Article (PDF)

Keywords

Keywords: Transparent K0.5Na0.5NbO3, laser fusing, kinetic window, crystallization, transmission behavior

References

1 Yamamoto, K.: A noise reduction system using piezoelectric materials, Railway Technol. Avalanche, 34, 5, (2011).

2 Kim, J., Lee, J.: Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material, J. Acoust. Soc. Am., 112, [3], 990 – 998, (2002).

3 Ichiki, M., Zhang, L., Tanaka, M., Maeda, R.: Electrical properties of piezoelectric sodium potassium niobate J. Eur. Ceram. Soc., 24, 1693 – 1697, (2004).

4 Lee, Y., Cho, J., Kim, B., Choi, D.: Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0.5Na0.5)NbO3 ceramics, Jpn. J. Appl. Phys., 47, [6], 4620 – 4622, (2008).

5 Zuo, R., Rödel, J., Chen, R., Li, L.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics, J. Am. Ceram. Soc., 89, [6], 2010 – 2015, (2006).

6 Haertling, G.H.: Properties of hot-pressed ferroelectric alkali niobate ceramics, J. Am. Ceram. Soc., 50, [6], 329 – 330, (1967).

7 Alberta, E., Bhalla, A.: Piezoelectric and dielectric properties of transparent pb (Ni1/3 Nb2/3)1-x-y ZrxTiyO3 ceramics prepared by hot isostatic pressing, Int. J. Inorg. Mat., 3, 987 – 995, (2001).

8 Houng, B., Haun, M.J.: Lead titanate and lead zirconate piezoelectric glass-ceramics, Ferroelectrics, 154, [1], 107 – 112, (1994).

9 Yongsiri, P., Eitssayeam, S., Rujijanagul, G., Sirisoonthorn, S., Tunkasiri, T., Pengpat, K.: Fabrication of transparent lead-free KNN glass ceramics by incorporation method, Nanoscale Res. Lett., 7, [136], 1 – 9, (2012)

10 Zanotto, E.D.: A bright future for glass-ceramics, Am. Ceram. Soc. Bull., 89, [8], 19 – 27, (2010).

11 Parkash, O., Kumar, D., Pandey, L.: Glass ceramics containing ferroelectric phases, Bull. Mater. Sci., 8, [5], 557 – 565, (1986).

12 Fanelli, E., Pernice, P., Xiao, M., Aronne, A., Sigaev, V.N.: Crystallization behaviour and nanostructuring in alkali niobiosilicate glasses, J. Mater. Sci. Technol., 27, [2], 189 – 192, (2011).

13 Yu, J., Arai, Y., Masaki, T., Ishikawa, T., Yoda, S., Kohara, S., Taniguch, H., Itoh, M., Kuroiwa, Y.: Fabrication of BaTi2O5 glass-ceramics with unusual dielectric properties during crystallization, Chem. Mater., 18, [8], 2169 – 2173, (2006).

14 Houng, B., Haun, M.J.: Lead zirconate titanate-lead silicate piezoelectric glass-ceramics, in Proceedings of the Ninth IEEE International Symposium on the Applications of Ferroelectrics, Pennsylvania State University, University Park, PA, IEEE Cat. No. 94CH3416 – 5, 214 – 217, (1994).

15 Rosenflanz, A., Fery, M., Endres, B., Anderson, T., Richards, E., Schardt, C.: Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides, Nature, 430, 761 – 764, (2004).

16 Nassau, K., Wang, C.A., Grasso, M.: Quenched metastable glassy and crystalline phases in system lithium-potassium metaniobate-tantalate, J. Am. Ceram. Soc., 62, [9 – 10], 503 – 510, (1979).

17 Weber, J.K.: The containerless synthesis of glass, Int. J. Appl. Glass. Sci., 1, [3], 248 – 256, (2010).

18 Tatsumisago, M., Hamada, A., Minami, T., Tanaka, M.: Structure and properties of rapidly quenched Li2O-Al2O3-Nb2O3 glasses, J. Am. Ceram. Soc., 66, [12], 890 – 892, (1983).

19 Nassau, K., Wang, C.A., Grasso, M.: Quenched metastable glassy and crystalline phases in the system lithium-sodium-potassium metatantalate, J. Am. Ceram. Soc., 62, [1 – 2], 74 – 79, (1979).

20 Prnová, A., Lichvár, P., Galušek, D., Galuskova, D.: Flame synthesis of aluminate glass microspheres, Eur. J. Glass Sci. Technol., 51, [6], 248 – 252, (2010).

21 Oelgardt, C., Günster, J., Heinrich, J.G..: Characterization of the crystallization behavior of laser-fused transparent microspheres with the eutectic composition Al2O3-Y2O3-ZrO2 (AYZ), J. Ceram. Sci. Tech., 2, [2], 103 – 110, (2011).

22 Houng, B., Kim, C.Y., Haun, M.: Densification, crystallization, and electrical properties of lead zirconate titanate glass-ceramics, IEEE T. Ultradon. Ferr., 47, [4], 808 – 818, (2000).

23 Gardopee, G.J., Newnham, R.E., Bhalla, A.S.: Pyroelectric Li2Si2O5 glass-ceramics, Ferroelectrics, 33, 155 – 163, (1981).

24 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Ba2TiGe2O8 and Ba2TiSi2O8 pyroelectric glass-ceramics, J. Mat. Sci., 16, [4], 1023 – 1028, (1981).

25 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Polar glass-ceramics, Ferroelectrics, 38, 781 – 784, (1981).

26 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Piezoelectric and elastic properties of barium germanium titanate and lithium borosilicate glass-ceramics, Ultrason., 315 – 318, (1981).

27 Layton, M.M., Smith, J.W.: Pyroelectric response in transparent ferroelectric glass-ceramics, J. Am. Ceram. Soc., 58, [9 – 10], 435 – 437, (1975).

28 Thongsaeng, S., Niyompan, A., Tipakontitikul, R., Pengpat, K.: Formation of NaNbO3 crystals in dielectric glass and glass-ceramics of a Na2O-Nb2O5-Al2O3-SiO2 system, Adv. Mat. Res., 55 – 57, 229 – 232, (2008).

29 Chaliha, R.S., Annapurna, K., Tarafder, A., Tirwari, V.S., Gupta, P.K., Karmakar, B.: Structure, dielectric, and optical properties of transparent Nd+3:KNbO3 nanocrystalline glass-ceramics, Opt. Mater., 32, 1202 – 1209, (2010).

30 Tellier, J., Malic, B., Dkhil, B., Jenko, D., Cilensek, J., Kosec, M.: Crystal structure and phase transitions of sodium potassium niobate perovskites, Solid State Sci., 11, 320 – 324, (2009).

31 Tian, X., Dittmar, A., Melcher, J., Heinrich, J.G.: Sinterability studies on K0.5Na0.5NbO3 using laser as energy source, Appl. Surf. Sci., 256, 5918 – 5923, (2010).

32 Herziger, G., Loosen, P.: Materials processing with lasers (in German): Hanser Verlag, Munich-Vienna, 1993.

33 Pernice, P., Aronne, A., Sigaev, V., Kupriyanova, M.: Crystallization of the K2O.Nb2O5.2SiO2 glass: evidences for existence of bulk nanocrystalline structure, J. Non-Cryst. Sol., 275, 216 – 224, (2000).

34 Halliyal, A., Safari, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Grain-oriented glass-ceramics for piezoelectric devices, J. Am. Ceram. Soc., 67, [5], 331 – 335, (1984).

35 Borrelli, N.F., Layton, M.M.: Electrooptic properties of transparent ferroelectric glass-ceramic systems, IEEE T. Electron Dev., ED-16, [6], 511 – 514, (1969).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH