Articles
All articles | Recent articles
Preparation of Transparent Microspheres in the K0.5Na0.5NbO3 System by Laser Fusing
F.J. Hmood, C. Oelgardt, R. Görke, J.G. Heinrich
University of Technology Clausthal, Department for Engineering Ceramics, Zehntnerstr. 2a, 38678 Clausthal-Zellerfeld, Germany
received October 1, 2012, received in revised form November 20, 2012, accepted January 19, 2013
Vol. 4, No. 1, Pages 41-48 DOI: 10.4416/JCST2012-00040a
Abstract
Transparent microspheres have been synthesized from K0.5Na0.5NbO3 using a CO2-5 kW laser beam. The influence of the laser power on the transparent fraction of the resulting microspheres has been investigated. Particle size (d50), chemical composition, microstructure, crystallization behavior and the optical transmission of the resulting microspheres have been characterized. The particle size of the resulting microspheres is 62.5 μm ± 1.4 μm. The highest transparent fraction is 68.5 % ± 1.6 %, achieved with the optimum laser power of 2 kW. The glass transition temperature (Tg) and the first temperature to induce crystallization (Tx) have been detected with a differential scanning calorimeter (DSC). They are 503 °C and 529 °C respectively. The transparent microspheres have been heat-treated at different temperatures in order to study the development of the microstructure. The correlation between the transparent fraction and the applied laser power has been discussed.
Download Full Article (PDF)
Keywords
Keywords: Transparent K0.5Na0.5NbO3, laser fusing, kinetic window, crystallization, transmission behavior
References
1 Yamamoto, K.: A noise reduction system using piezoelectric materials, Railway Technol. Avalanche, 34, 5, (2011).
2 Kim, J., Lee, J.: Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material, J. Acoust. Soc. Am., 112, [3], 990 – 998, (2002).
3 Ichiki, M., Zhang, L., Tanaka, M., Maeda, R.: Electrical properties of piezoelectric sodium potassium niobate J. Eur. Ceram. Soc., 24, 1693 – 1697, (2004).
4 Lee, Y., Cho, J., Kim, B., Choi, D.: Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0.5Na0.5)NbO3 ceramics, Jpn. J. Appl. Phys., 47, [6], 4620 – 4622, (2008).
5 Zuo, R., Rödel, J., Chen, R., Li, L.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics, J. Am. Ceram. Soc., 89, [6], 2010 – 2015, (2006).
6 Haertling, G.H.: Properties of hot-pressed ferroelectric alkali niobate ceramics, J. Am. Ceram. Soc., 50, [6], 329 – 330, (1967).
7 Alberta, E., Bhalla, A.: Piezoelectric and dielectric properties of transparent pb (Ni1/3 Nb2/3)1-x-y ZrxTiyO3 ceramics prepared by hot isostatic pressing, Int. J. Inorg. Mat., 3, 987 – 995, (2001).
8 Houng, B., Haun, M.J.: Lead titanate and lead zirconate piezoelectric glass-ceramics, Ferroelectrics, 154, [1], 107 – 112, (1994).
9 Yongsiri, P., Eitssayeam, S., Rujijanagul, G., Sirisoonthorn, S., Tunkasiri, T., Pengpat, K.: Fabrication of transparent lead-free KNN glass ceramics by incorporation method, Nanoscale Res. Lett., 7, [136], 1 – 9, (2012)
10 Zanotto, E.D.: A bright future for glass-ceramics, Am. Ceram. Soc. Bull., 89, [8], 19 – 27, (2010).
11 Parkash, O., Kumar, D., Pandey, L.: Glass ceramics containing ferroelectric phases, Bull. Mater. Sci., 8, [5], 557 – 565, (1986).
12 Fanelli, E., Pernice, P., Xiao, M., Aronne, A., Sigaev, V.N.: Crystallization behaviour and nanostructuring in alkali niobiosilicate glasses, J. Mater. Sci. Technol., 27, [2], 189 – 192, (2011).
13 Yu, J., Arai, Y., Masaki, T., Ishikawa, T., Yoda, S., Kohara, S., Taniguch, H., Itoh, M., Kuroiwa, Y.: Fabrication of BaTi2O5 glass-ceramics with unusual dielectric properties during crystallization, Chem. Mater., 18, [8], 2169 – 2173, (2006).
14 Houng, B., Haun, M.J.: Lead zirconate titanate-lead silicate piezoelectric glass-ceramics, in Proceedings of the Ninth IEEE International Symposium on the Applications of Ferroelectrics, Pennsylvania State University, University Park, PA, IEEE Cat. No. 94CH3416 – 5, 214 – 217, (1994).
15 Rosenflanz, A., Fery, M., Endres, B., Anderson, T., Richards, E., Schardt, C.: Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides, Nature, 430, 761 – 764, (2004).
16 Nassau, K., Wang, C.A., Grasso, M.: Quenched metastable glassy and crystalline phases in system lithium-potassium metaniobate-tantalate, J. Am. Ceram. Soc., 62, [9 – 10], 503 – 510, (1979).
17 Weber, J.K.: The containerless synthesis of glass, Int. J. Appl. Glass. Sci., 1, [3], 248 – 256, (2010).
18 Tatsumisago, M., Hamada, A., Minami, T., Tanaka, M.: Structure and properties of rapidly quenched Li2O-Al2O3-Nb2O3 glasses, J. Am. Ceram. Soc., 66, [12], 890 – 892, (1983).
19 Nassau, K., Wang, C.A., Grasso, M.: Quenched metastable glassy and crystalline phases in the system lithium-sodium-potassium metatantalate, J. Am. Ceram. Soc., 62, [1 – 2], 74 – 79, (1979).
20 Prnová, A., Lichvár, P., Galušek, D., Galuskova, D.: Flame synthesis of aluminate glass microspheres, Eur. J. Glass Sci. Technol., 51, [6], 248 – 252, (2010).
21 Oelgardt, C., Günster, J., Heinrich, J.G..: Characterization of the crystallization behavior of laser-fused transparent microspheres with the eutectic composition Al2O3-Y2O3-ZrO2 (AYZ), J. Ceram. Sci. Tech., 2, [2], 103 – 110, (2011).
22 Houng, B., Kim, C.Y., Haun, M.: Densification, crystallization, and electrical properties of lead zirconate titanate glass-ceramics, IEEE T. Ultradon. Ferr., 47, [4], 808 – 818, (2000).
23 Gardopee, G.J., Newnham, R.E., Bhalla, A.S.: Pyroelectric Li2Si2O5 glass-ceramics, Ferroelectrics, 33, 155 – 163, (1981).
24 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Ba2TiGe2O8 and Ba2TiSi2O8 pyroelectric glass-ceramics, J. Mat. Sci., 16, [4], 1023 – 1028, (1981).
25 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Polar glass-ceramics, Ferroelectrics, 38, 781 – 784, (1981).
26 Halliyal, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Piezoelectric and elastic properties of barium germanium titanate and lithium borosilicate glass-ceramics, Ultrason., 315 – 318, (1981).
27 Layton, M.M., Smith, J.W.: Pyroelectric response in transparent ferroelectric glass-ceramics, J. Am. Ceram. Soc., 58, [9 – 10], 435 – 437, (1975).
28 Thongsaeng, S., Niyompan, A., Tipakontitikul, R., Pengpat, K.: Formation of NaNbO3 crystals in dielectric glass and glass-ceramics of a Na2O-Nb2O5-Al2O3-SiO2 system, Adv. Mat. Res., 55 – 57, 229 – 232, (2008).
29 Chaliha, R.S., Annapurna, K., Tarafder, A., Tirwari, V.S., Gupta, P.K., Karmakar, B.: Structure, dielectric, and optical properties of transparent Nd+3:KNbO3 nanocrystalline glass-ceramics, Opt. Mater., 32, 1202 – 1209, (2010).
30 Tellier, J., Malic, B., Dkhil, B., Jenko, D., Cilensek, J., Kosec, M.: Crystal structure and phase transitions of sodium potassium niobate perovskites, Solid State Sci., 11, 320 – 324, (2009).
31 Tian, X., Dittmar, A., Melcher, J., Heinrich, J.G.: Sinterability studies on K0.5Na0.5NbO3 using laser as energy source, Appl. Surf. Sci., 256, 5918 – 5923, (2010).
32 Herziger, G., Loosen, P.: Materials processing with lasers (in German): Hanser Verlag, Munich-Vienna, 1993.
33 Pernice, P., Aronne, A., Sigaev, V., Kupriyanova, M.: Crystallization of the K2O.Nb2O5.2SiO2 glass: evidences for existence of bulk nanocrystalline structure, J. Non-Cryst. Sol., 275, 216 – 224, (2000).
34 Halliyal, A., Safari, A., Bhalla, A.S., Newnham, R.E., Cross, L.E.: Grain-oriented glass-ceramics for piezoelectric devices, J. Am. Ceram. Soc., 67, [5], 331 – 335, (1984).
35 Borrelli, N.F., Layton, M.M.: Electrooptic properties of transparent ferroelectric glass-ceramic systems, IEEE T. Electron Dev., ED-16, [6], 511 – 514, (1969).
Copyright
Göller Verlag GmbH